Photonic-crystal fibers gyroscope


  • Ali Muse Haider Kharkiv national university of radio electronics ave. Lenina 14, Kharkov, 61000



fiber optical gyroscope, photonic crystal fiber, Sagnac effect


In this paper we proposed to use of a photonic crystal fiber with an inner hollow defect. The use of such fibers is not affected by a material medium on the propagation of optical radiation. Photonic crystal fibers present special properties and capabilities that lead to an outstanding potential for sensing applications

Author Biography

Ali Muse Haider, Kharkiv national university of radio electronics ave. Lenina 14, Kharkov, 61000

Faculty of electronic engineering

Department of Physical Foundations of Electronic Engineering


Shinde, Y. S., Gahir, H. K. (2008). Dynamic pressure sensing study using photonic crystal fiber: application to tsunami sensing. IEEE Photonics Technology Letters, 20 (4), 279–281. doi: 10.1109/lpt.2007.913741

Nuttall, J. D. (1987). Optical Gyroscopes. Electronics and Power, 33 (11-12), 703–707. doi: 10.1049/ep.1987.0426

Bock, W. J., Chen, J., Mikulic, P., Eftimov, T., Korwin-Pawlowski, M. (2007). Pressure sensing using periodically tapered long-period gratings written in photonic crystal fibres. Measurement Science and Technology, 18 (10), 3098–3102. doi: 10.1088/0957-0233/18/10/s08

Andronova, I. A., Malykin, G. B. (2002). Physical problems of fibergiroscope based on the Sagnac effect. Physics-Uspekhi, 45 (8), 793–817. doi: 10.1070/pu2002v045n08abeh001073

Knight, J. C., Birks, T. A., Russel, P. St. J., Atkin, D. M. (1996). All-silica single-mode optical fiber with photonic crystal cladding. Optics Letters, 22 (19), 1547. doi: 10.1364/ol.21.001547

Birks, T. A., Knight, J. C., Russel, P. St. J. (1997). Endlessly single-mode photonic crystal fiber. Optics Letters, 22 (13), 961. doi: 10.1364/ol.22.000961

Mortensen, N. A., Folkenberg, J. R. (2003). Low-loss criterion and effective areaconsiderations for photonic crystal fibers. Journal of Optics A: Pure and Applied Optics, 5 (3), 163–167. doi: 10.1088/1464-4258/5/3/303

Nielsen, M. D., Mortensen, N. A., Folkenberg, J. R. (2003). Reducedmicrodeformation attenuation in large-mode-area photonic crystal fibers forvisible applications. Optics Letters, 28 (18), 1645. doi: 10.1364/ol.28.001645

Février, S., Viale, P., Gérôme, F., Leproux, P., Roy, P., Blondy, J.-M., Dussardier, B., Monnom, G. (2003). Very large effective area singlemode photonic bandgab fibre. Electronics Letters, 39 (17), 1240. doi: 10.1049/el:20030841

Knight, J. C., Birks, T. A., Cregan, R. F., Russel, P. St. J., de Sandro, J.-P. (1998). Large Mode area photonic crystal fibre. Electronics Letters, 34 (13), 1347. doi: 10.1049/el:19980965

Baggett, J. C., Monro, T. M., Furusawa, K., Richardson, D. J. (2001). Comparative Study of large-mode holey and conventional fibers. Optics Letters, 26 (14), 1045. doi: 10.1364/ol.26.001045

Jiang, X., Euser, T. G., Abdolvand, F. (2011). Single-modehollow-corephotonic crystal fiber madefrom siftglass. Optics express, 19 (16), 15438–15444.






Technical Sciences