Photonic-crystal fibers gyroscope
DOI:
https://doi.org/10.15587/2313-8416.2015.36233Keywords:
fiber optical gyroscope, photonic crystal fiber, Sagnac effectAbstract
In this paper we proposed to use of a photonic crystal fiber with an inner hollow defect. The use of such fibers is not affected by a material medium on the propagation of optical radiation. Photonic crystal fibers present special properties and capabilities that lead to an outstanding potential for sensing applications
References
Shinde, Y. S., Gahir, H. K. (2008). Dynamic pressure sensing study using photonic crystal fiber: application to tsunami sensing. IEEE Photonics Technology Letters, 20 (4), 279–281. doi: 10.1109/lpt.2007.913741
Nuttall, J. D. (1987). Optical Gyroscopes. Electronics and Power, 33 (11-12), 703–707. doi: 10.1049/ep.1987.0426
Bock, W. J., Chen, J., Mikulic, P., Eftimov, T., Korwin-Pawlowski, M. (2007). Pressure sensing using periodically tapered long-period gratings written in photonic crystal fibres. Measurement Science and Technology, 18 (10), 3098–3102. doi: 10.1088/0957-0233/18/10/s08
Andronova, I. A., Malykin, G. B. (2002). Physical problems of fibergiroscope based on the Sagnac effect. Physics-Uspekhi, 45 (8), 793–817. doi: 10.1070/pu2002v045n08abeh001073
Knight, J. C., Birks, T. A., Russel, P. St. J., Atkin, D. M. (1996). All-silica single-mode optical fiber with photonic crystal cladding. Optics Letters, 22 (19), 1547. doi: 10.1364/ol.21.001547
Birks, T. A., Knight, J. C., Russel, P. St. J. (1997). Endlessly single-mode photonic crystal fiber. Optics Letters, 22 (13), 961. doi: 10.1364/ol.22.000961
Mortensen, N. A., Folkenberg, J. R. (2003). Low-loss criterion and effective areaconsiderations for photonic crystal fibers. Journal of Optics A: Pure and Applied Optics, 5 (3), 163–167. doi: 10.1088/1464-4258/5/3/303
Nielsen, M. D., Mortensen, N. A., Folkenberg, J. R. (2003). Reducedmicrodeformation attenuation in large-mode-area photonic crystal fibers forvisible applications. Optics Letters, 28 (18), 1645. doi: 10.1364/ol.28.001645
Février, S., Viale, P., Gérôme, F., Leproux, P., Roy, P., Blondy, J.-M., Dussardier, B., Monnom, G. (2003). Very large effective area singlemode photonic bandgab fibre. Electronics Letters, 39 (17), 1240. doi: 10.1049/el:20030841
Knight, J. C., Birks, T. A., Cregan, R. F., Russel, P. St. J., de Sandro, J.-P. (1998). Large Mode area photonic crystal fibre. Electronics Letters, 34 (13), 1347. doi: 10.1049/el:19980965
Baggett, J. C., Monro, T. M., Furusawa, K., Richardson, D. J. (2001). Comparative Study of large-mode holey and conventional fibers. Optics Letters, 26 (14), 1045. doi: 10.1364/ol.26.001045
Jiang, X., Euser, T. G., Abdolvand, F. (2011). Single-modehollow-corephotonic crystal fiber madefrom siftglass. Optics express, 19 (16), 15438–15444.
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Haider Ali Muse
This work is licensed under a Creative Commons Attribution 4.0 International License.
Our journal abides by the Creative Commons CC BY copyright rights and permissions for open access journals.
Authors, who are published in this journal, agree to the following conditions:
1. The authors reserve the right to authorship of the work and pass the first publication right of this work to the journal under the terms of a Creative Commons CC BY, which allows others to freely distribute the published research with the obligatory reference to the authors of the original work and the first publication of the work in this journal.
2. The authors have the right to conclude separate supplement agreements that relate to non-exclusive work distribution in the form in which it has been published by the journal (for example, to upload the work to the online storage of the journal or publish it as part of a monograph), provided that the reference to the first publication of the work in this journal is included.