DOI: https://doi.org/10.15587/2313-8416.2015.39198

Asymptotic estimations and convergence estimations of functional series describing unstationary vibrations of shells

Леонид Борисович Лерман

Abstract


Properties of solution of non-stationary tasks are set for the systems of differential equations of shell theory. Solutions are built as decompositions to on own the forms of vibrations of shells. With the use of the got functional rows asymptotic estimations are set for the small and large (in relation to the basic period of vibrations of the system) intervals of time. The general estimations of convergence of functional series are received


Keywords


shell theory; nonstationary solutions; asymptotic estimations; functional series

References


Lerman, L. B. (2000). On solution of problems of dynamics of plates and shells with local structure heterogeneities. Int. Appl. Mechanics, 35 (10), 1014–1020.

Zarutsky, V. A., Lerman, L. B. (1999). The realization of modal superposition method in shell dynamic problems with constructive heterogeneities. Zeszyty naukove politchniki Rrzeszowskie, Nr. 174, Mechanica, z. 52, Problemy dynamiki konstrukcji: Rzeszow, 127–132.

Lerman, L. B. (2001). About some properties of solutions of non-classic Eigen value problem for vibrations’ shell equations. Bulletin of University of Kyiv, Series: Physics & Mathematics, Part 3, 52–56.

Lerman, L. B. (2000). On determination of stationary states for systems of thin-walled elements at propagation of harmonic disturbances. Acoustic bulletin, 3 (1), 61–72.

Lerman, L. B. (2000). On solution of problems of dynamics of thin-walled elements of construction with inhomogeneous dynamics boundary conditions. Int. Appl. Mechanics, 36 (8), 97–103.

Gus’, A. N. (Ed.) (1980). Methods of shell design. In five volumes. Kyiv: Nauk. Dumka.

Bazhenov, V. A., Dacshenko, L. V., Kolomiez, L. V. (2005). Numerical method in mechanics. Odessa: Standard, 563.

Slepyan, L. I. (1972). Nonsteady elastic waves. Lviv: Shipbuilding, 376.

Gylin, P. A. (2006). Applied Mechanics rudiments of shell theory. Saint-Petersburg: Leningrad Polytechnic, 166.

Altenbach, H., Veremeyev, V. A. (2001). On the shell theory on nanoscale with surface stresses. International Journal of Engineering Science, 49 (12), 1294–1301. doi: 10.1016/j.ijengsci.2011.03.011

Ergin, A., Ugurlu, B. (2009). Linear vibration analysis of cantilever plates partially submerged in fluid. Journal of Fluids and Structures, 17 (7), 927–939. doi: 10.1016/s0889-9746(03)00050-1

Moffal, S., He, L. (2005). On decoupled and fully-coupled methods for lade curved cylindrical plates with variable thickness. Journal of Fluids and Structures, 20, 217–234. doi: 10.1016/j.jfluidstructs.2004.10.012

Zabegaev, A. I. (2002). Dynamical model of composite shell construction for calculation loads in conditions of intensive shearing actions. First Utkin reading. Math. All-Russian scientific and technical conference Saint-Petersburg, 2, 138–140.

Ivanco, T. G., Keller, D. F. (2012). Investigations of ground-wind loads for launch vehicles. Journal of Spacecraft and Rockets, 49 (4), 574–585. doi: 10.2514/1.59457

Alijant, F., Amabili, M. (2014). Non-linear vibrations of shells: A literature review from 2003 to 2013. International Journal of Non-Linear Mechanics, 58 (2064), 233–257. doi: 10.1016/j.ijnonlinmec.2013.09.012

Qatu, M. S., Sullivan, R. W., Wang, W. (2010). Recent research advances of the dynamic analysis of composite shells: 2000-2009. Composite Structure, 93 (1), 14–31. doi: 10.1016/j.compstruct.2010.05.014

Abel, J. F., Cooke, J. R. (Eds.) (2008). Proceeding of the 6th International Conference on Computation of Shell and Spatial Structures IASS-IACM 2008: Spanning Nano to Mega. Cornell University, Ithaca, NY, USA.

Naimark, M. A. (1969). Linear differential operators. Moscow: Nauka, 528.

Berezansky, Yu. M. (1965). Expansion by eigenfunctions of self-adjoint operators. Kyiv: Nauk. Dumka, 779.

Levitan, B. M., Sargsyan, I. S. (1970). Introduction in spectral theory (self-adjoint ordinary differential operators). Moscow: Nauka, 671.


GOST Style Citations


1. Lerman, L. B. On solution of problems of dynamics of plates and shells with local structure heterogeneities [Text] / L. B. Lerman // International Applied Mechanics. – 2000. – Vol. 35, Issue 10. – P. 1014–1020.

2. Zarutsky, V. A. The realization of modal superposition method in shell dynamic problems with constructive heterogeneities [Text] / V. A. Zarutsky, L. B. Lerman // Zeszyty naukove politchniki Rrzeszowskie. – 1999. – Nr 174,.Mechanica, z. 52, Problemy dynamiki konstrukcji. – Rzeszow, 1999. – P. 127–132.

3. Лерман, Л. Б. Про деякі властивості розв’язків некласичних задач на власні значення для рівнянь коливань оболонок [Текст] / Л. Б. Лерман.// Вісник Київс. ун-ту, Серія фіз.-мат. наук. – 2001. – Вип. 3. – С. 52–56.

4. Лерман, Л. Б. Об определении стационарных состояний при распространении гармонических возмущений в системах тонкостенных элементов [Текст] / Л. Б. Лерман // Акустический вестник. – 2000. – Т. 3, № 1, 61-72.

5. Lerman, L. B. On solution of problems of dynamics of thin-walled elements of construction with inhomogeneous dynamics boundary conditions [Text] / L. B. Lerman // International Applied Mechanics. – 2000. – Vol. 36, Issue 8. – P. 97–103.

6. Методы расчета оболочек. В пяти томах [Текст] / под общ. ред. А. Н. Гузя. – Киев: Наук. думка, 1980.

7. Баженов, В. А. Численные методы в механике [Текст] / В. А. Баженов, А. Ф. Дащенко, Л. В. Коломиец и др. – Одесса: «Стандарт», 2005. – 563 с.

8. Слепян, Л. И. Нестационарные упругие волны [Текст] / Л. И Слепян. – Л.: Судостроение, 1972. – 376 с.

9. Жилин, П. А. Прикладная механика. Основы теории оболочек [Текст] / П. А. Жилин. – Санкт-Петербург: Из-во Политехнического университета, 2006. – 166 с.

10. Altenbach, H. On the shell theory on nanoscale with surface stresses [Text] / H. Altenbach, V. A. Veremeyev // International Journal of Engineering Science. – 2001. – Vol. 49, Issue 12. – P. 1294–1301. doi: 10.1016/j.ijengsci.2011.03.011 

11. Ergin, A. Linear vibration analysis of cantilevver plates partially submerged in fluid [Text] / A. Ergin, B. Ugurlu // Journal of Fluids and Structures. – 2003. – Vol. 17, Issue 7. – P. 927–939. doi: 10.1016/s0889-9746(03)00050-1 

12. Moffal, S. On decoupled and fully-coupled methods for llade cueved cylindrical plates with variable thickness [Text] / S. Moffal, L. He. // Journal of Fluids and Structures. – 2005. – Vol. 20, Issue 2. – P. 217–234. doi: 10.1016/j.jfluidstructs.2004.10.012 

13. Забегаев, А. И. Динамическая модель составной оболочковой конструкции для расчетов нагрузок в условиях интенсивных поперечных воздействий [Текст] / А. И. Забегаев // Первые Уткинские чтения. Мат. Общероссийской науч.-техн. конф. Сант-Петербург. – 2002. – Т. 2. – С. 138–140.

14. Ivanco, T. G. Investigations og groud-wind loads for launch vehicles [Text] / T. G. Ivanco, D. F. Keller // Journal of Spacecraft and Rockets. – 2012. – Vol. 49, Issue 4. – P. 574–585. doi: 10.2514/1.59457 

15. Alijant, F. Non-linear vibrations of shells: A literature review from 2003 to 2013 [Text] / F. Alijant, M. Amabili // International Journal of Non-Linear Mechanics. – 2014. – Vol. 58, Issue 2064. – P. 233–257. doi: 10.1016/j.ijnonlinmec.2013.09.012 

16. Qatu, M. S. Recent research advances of the dynamic analysis of composite shells: 2000-2009 [Text] / M. S. Qatu, R. W. Sullivan, W. Wang // Composite Structure. – 2010. – Vol. 93, Issue 1. – P. 14–31. doi: 10.1016/j.compstruct.2010.05.014 

17. Proceeding of the 6th International Conference on Computation of Shell and Spatial Structures IASS-IACM 2008: Spanning Nano to Mega [Text] / J. F. Abel, J. R. Cooke (Eds.) // Cornell University, Ithacu, NY, USA, 2008.

18. Наймарк, М. А. Линейные дифференциальные операторы [Текст] / М. А. Наймарк. – М. Наука, 1969. – 528 с.

19. Березанский, Ю. M., Разложение по собственным функциям самосопряженных операторов [Текст] / Ю. М. Березанский. – Киев: Наук. Думка, 1965. – 779 с.

20. Левитан, Б. М. Введение в спектральную теорию (самосопряженные обыкновенные дифференицмальные операторы) [Текст] / Б. М. Левитан, И. С. Саргсян. – M.: Наука, 1970. – 671 с.







Copyright (c) 2015 Леонид Борисович Лерман

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN 2313-8416 (Online), ISSN 2313-6286 (Print)