System control fuzzy neural sewage pumping stations using genetic algorithms

Authors

  • Владлен Николаевич Кузнецов Stary Oskol Technological Institute. A. Ugarov (branch) of the Federal State Autonomous Educational Institution of Higher Professional Education "National Research Technological University" 42 Makarenko District, Stary Oskol, Belgorod region
  • Валентин Семенович Есилевский National University of Radioelectronics in Kharkiv 14, Lenin Av., Kharkov, Ukraine, 61 000
  • Сергей Васильевич Дядюн O.M. Beketov National University of Urban Economy in Kharkiv 12, Revolution St., Kharkov, Ukraine, 61 002
  • Анна Викторовна Белогурова O.M. Beketov National University of Urban Economy in Kharkiv 12, Revolution St., Kharkov, Ukraine, 61 002

DOI:

https://doi.org/10.15587/2313-8416.2015.43328

Keywords:

genetic algorithm, control, neural network, water supply system, pumping station

Abstract

It is considered the system of management of sewage pumping station with regulators based on a neuron network with fuzzy logic. Linguistic rules for the controller based on fuzzy logic, maintaining the level of effluent in the receiving tank within the prescribed limits are developed. The use of genetic algorithms for neuron network training is shown.

Author Biographies

Владлен Николаевич Кузнецов, Stary Oskol Technological Institute. A. Ugarov (branch) of the Federal State Autonomous Educational Institution of Higher Professional Education "National Research Technological University" 42 Makarenko District, Stary Oskol, Belgorod region

Doctor of Technical Sciences, professor

Department of Automation and Control Systems

Валентин Семенович Есилевский, National University of Radioelectronics in Kharkiv 14, Lenin Av., Kharkov, Ukraine, 61 000

PhD, associate professor

Department of Applied Mathematics

Сергей Васильевич Дядюн, O.M. Beketov National University of Urban Economy in Kharkiv 12, Revolution St., Kharkov, Ukraine, 61 002

PhD in Engineering, associate professor

Department of Applied Mathematics and Information Technologies

Анна Викторовна Белогурова, O.M. Beketov National University of Urban Economy in Kharkiv 12, Revolution St., Kharkov, Ukraine, 61 002

PhD, associate professor

Department of Applied Mathematics and Information Technologies

References

Esilevskiy, V. S., Kuznetsov, V. N., Uvarova, L. V. (2009). Minimizatsiya energozatrat na upravlenie nasosnyimi stantsiyami putem ispolzovaniya regulyatorov s nechetkoy logikoy. «Santehnika» Vodosnabzhenie. Vodootvedenie, 1, 64–70.

Esilevskiy, V. S., Kuznetsov, V. N. (2012). Sistema nechetko-neyronnogo upravleniya kanalizatsionnyimi nasosnyimi stantsiyami. Mezhdunarodnyiy kongress «Voda: ekologiya i tehnologiya» EKVATEK-2012. Moscow.

Rutkovskaya, D., Pilinskiy, M., Rutkovskiy, L. (2004). Neyronnyie seti, geneticheskie algoritmyi i nechetkie sistemyi. Moscow: Goryachaya liniya – Telekom, 452.

Siddique, N. H. (2013). Computational intelligence : synergies of fuzzy logic, neural networks, and evolutionary computing. Chichester, West Sussex, United Kingdom: John Wiley & Sons Inc., 517.

Kuznetsov, V. N. (2008). Avtomatizatsiya upravleniya truboprovodnyimi transportnyimi sistemami metallurgicheskih predpriyatiy. Staryiy Oskol, «TNT».

Esilevskiy, V. S., Kuznetsov, V. N., Kelepko, A. Yu. (2008). Neyrosetevaya sistema identifikatsii sostoyaniya betonnyih kollektorov po tsifrovomu izobrazheniyu. «Voda: ekologiya i tehnologii». EKVATEK-2008. Moscow.

Haykin, S. (2006). Neyronnyie seti polnyiy kurs. Izdatelskiy dom «Vilyams», 1104.

Evdokimov, A. G., Tevyashev, A. D., Dubrovskiy, V. V. (1990). Modelirovanie i optimizatsiya potokoraspredeleniya v inzhenernyih setyah. Moscow: Stroyizdat, 368.

Dyadyun, S. V. (2001). Identifikatsiya parametrov nasosnyih stantsiy truboprovodnyih sistem. V sb. "ASU i priboryi avtomatiki", Harkov, HNURE, 116, 96–104.

Dyadyun, S. V. (1992). Vyibor optimalnyih kombinatsiy agregatov nasosnoy stantsii gorodskogo vodoprovoda. Kommunalnoe hozyaystvo gorodov. – Kiev: TehnIka, 1, 63–70.

Published

2015-06-21

Issue

Section

Technical Sciences