DOI: https://doi.org/10.15587/2313-8416.2015.51353

«Bottom – up» nanoelectronics: the hall effects, measurement of electrochemical potentials and spin transport in the NEGF model

Юрій Олексійович Кругляк

Abstract


The Hall effects, measurement of electrochemical potentials, the Landauer and Buttiker approaches, an account of magnetic field in the non-equilibrium Green’s functions (NEGF) method, spin transport by the NEGF method in the spinor representation, in particular, rotating magnetic contacts and spins, Zeeman and Rashba spin Hamiltonians, calculation of the spin potential, and four-component description of spin transport are discussed in the «bottom – up» approach of modern nanoelectronics


Keywords


nanoelectronics; Hall effects; chemical potential measurement; spin transport; NEGF method; graphene

References


Hall, E. H. (1879). On a New Action of the Magnet on Electric Currents. American Journal of Mathematics, 2 (3), 287–292. doi: 10.2307/2369245

Klitzing, K. v., Dorda, G., Pepper, M. (1980). New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance. Physical Review Letters, 45 (6), 494–497. doi: 10.1103/physrevlett.45.494

fon Klitcing, K. (1985). Kvantovyj jeffekt Holla: Nobelevskie lekcii po fizike. UFN, 150 (1), 107–126.

Reedtz, G. M., Cage, M. E. (1987). An automated potentiometric system for precision measurement of the quantized hall resistance. Journal of Research of the National Bureau of Standards, 92 (5), 303–310. doi: 10.6028/jres.092.030

Tsui, D. C., Stormer, H. L., Gossard, A. C. (1982). Two-Dimensional Magnetotransport in the Extreme Quantum Limit. Physical Review Letters, 48 (22), 1559–1562. doi: 10.1103/physrevlett.48.1559

Stepanovskij, Ju. P. (1998). Drobnyj kvantovyj jeffekt Holla. Jelektromagnitnye javlenija,1 (3), 427–442.

Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H., Ong, N. P. (2010). Anomalous Hall effect. Reviews of Modern Physics, 82 (2), 1539–1592. doi: 10.1103/revmodphys.82.1539

Dyakonov, M. I., Perel, V. I. (1971). Possibility of orientating electron spins with current. Sov. Phys. JETP Lett., 13, 467.

Dyakonov, M. I., Perel, V. I. (1971). Current-induced spin orientation of electrons in semiconductors. Physics Letters A, 35 (6), 459–460. doi: 10.1016/0375-9601(71)90196-4

Kane, C. L., Mele, E. J. (2005). Quantum Spin Hall Effect in Graphene. Physical Review Letters, 95 (22). doi: 10.1103/physrevlett.95.226801

Srinivasan, S., Sarkar, A., Behin-Aein, B., Datta, S. (2011). All-Spin Logic Device With Inbuilt Nonreciprocity. IEEE Transactions on Magnetics, 47 (10), 4026–4032. doi: 10.1109/tmag.2011.2159106

Kane, C., Moore, J. (2011). Topological insulators. Physics World, 24 (02), 32–36. doi: 10.1088/2058-7058/24/02/36

Datta, S. (2012). Lessons from Nanoelectronics: A New Perspective on Transport. Hackensack, New Jersey: World Scientific Publishing Company, 492. doi: 10.1142/8029

Krugljak, Ju. A. (2015). Nanoelectronics «bottom – up»: current generation, generalized Ohm’s law, elastic resistors, conductivity modes, thermoelectricity. ScienceRise, 7/2 (12), 76–100. doi: 10.15587/2313-8416.2015.45700

Krugljak Ju. O., Krugljak, N. Ju., Striha, M. V. (2012). Uroky nanoelektroniky: vynyknennja strumu, formuljuvannja zakonu Oma i mody providnosti v koncepcii' «znyzu – vgoru». Sensor. elektr. mikrosyst. tehn., 9 (4), 5–29. Available at: http://dspace.onu.edu.ua:8080/handle/123456789/3643

Ashkroft N., Mermin N. (1979). Fizika tverdogo tela. Vol. 1-2. Moscow: Mir, 458; 486.

Rashba, E. I. (2003). Spin currents in thermodynamic equilibrium: The challenge of discerning transport currents. Physical Review B, 68 (24). doi: 10.1103/physrevb.68.241315

Buttiker, M. (1988). Symmetry of electrical conduction. IBM Journal of Research and Development, 32 (3), 317–334. doi: 10.1147/rd.323.0317

Krugljak, Ju. A. (2015). Nanoelectronics «bottom – up»: non-equillibrium Green’s functions method, model transport problems and quantum interference. ScienceRise, 9/2 (14), 41–72. doi: 10.15587/2313-8416.2015.48827

Krugljak, Ju. A. (2015). Nanoelectronics «bottom – up»: non-equillibrium Green’s functions method, model transport problems and quantum interference. ScienceRise, 2/2 (7), 93–106. doi: 10.15587/2313-8416.2015.36443

Krugljak, Ju. A. (2015). The «bottom – up» nanoelectronics: elements of spintronics and magnetronics. ScienceRise, 8/2 (13), 51–68. doi: 10.15587/2313-8416.2015.47792

Sears, F. W., Salinger, G. L. (1975). Thermodynamics, Kinetic Theory, and Statistical Thermodynamics. Boston: Addison-Wesley.

Landauer, R. (1957). Spatial Variation of Currents and Fields Due to Localized Scatterers in Metallic Conduction. IBM Journal of Research and Development, 1 (3), 223–231. doi: 10.1147/rd.13.0223

Landauer, R. (1970). Electrical resistance of disordered one-dimensional lattices. Philosophical Magazine, 21 (172), 863–867. doi: 10.1080/14786437008238472

Landauer, R. (1988). Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM Journal of Research and Development, 32 (3), 306–316. doi: 10.1147/rd.323.0306

Landauer, R. (1996). Spatial variation of currents and fields due to localized scatterers in metallic conduction (and comment). Journal of Mathematical Physics, 37 (10), 5259. doi: 10.1063/1.531590

Buttiker, M. (1986). Four-Terminal Phase-Coherent Conductance. Physical Review Letters, 57 (14), 1761–1764. doi: 10.1103/physrevlett.57.1761

Sharvin, Ju. V. (1965). Ob odnom vozmozhnom metode issledovanija poverhnosti Fermi. ZhJeTF,. 48 (3), 984–985.

Sharvin, Yu. V., Bogatina, N. I. (1969). Investigation of Focusing of Electron Beams in a Metal by a Longitudinal Magnetic Field. Sov. Phys. JETP, 29 (3), 419–423.

Imry, Y.; Grinstein, G., Mazenko, G. (Eds.) (1986). In Directions in Condensed Matter Physics. Singapore: World Scientific, 101.

Imry, Y., Landauer, R. (1999). Conductance viewed as transmission. Reviews of Modern Physics, 71 (2), 306–312. doi: 10.1103/revmodphys.71.s306

Lesovik, G. B., Sadovskij, I. A. (2011). Opisanie kvantovogo jelektronnogo transporta s pomoshh'ju matric rassejanija. UFN., 181 (10), 1041–1096. doi: 10.3367/ufnr.0181.201110b.1041

Stone, A. D., Szafer, A. (1988). What is measured when you measure a resistance? – The Landauer formula revisited. IBM Journal of Research and Development, 32 (3), 384–413. doi: 10.1147/rd.323.0384

Golizadeh-Mojarad, R., Zainuddin, A. N. M., Klimeck, G., Datta, S. (2008). Atomistic non-equilibrium Green’s function simulations of Graphene nano-ribbons in the quantum hall regime. Journal of Computational Electronics, 7 (3), 407–410. doi: 10.1007/s10825-008-0190-x

Haug, R. J. (1993). Edge-state transport and its experimental consequences in high magnetic fields. Semicond. Semiconductor Science and Technology, 8 (2), 131–153. doi: 10.1088/0268-1242/8/2/001

Cage, M. E. (1997). Current distributions in quantum Hall effect devices. Journal of Research of the National Institute of Standards and Technology, 102 (6), 677–691. doi: 10.6028/jres.102.045

Martines-Duart, Dzh. M., Martin-Palma, R. Dzh., Agullo-Rueda, F. (2007). Nanotehnologii dlja mikro- i optojelektroniki. Moscow: Tehnosfera, 368.

Berger, C., Song, Z., Li, X., Wu, X., Brown, N., Naud, C. et. al (2006). Electronic Confinement and Coherence in Patterned Epitaxial Graphene. Science, 312 (5777), 1191–1196. doi: 10.1126/science.1125925

Brey, L., Fertig, H. A. (2006). Edge states and the quantized Hall effect in graphene. Physical Review B, 73 (19). doi: 10.1103/physrevb.73.195408

Peres, N. M. R., Castro Neto, A. H., Guinea, F. (2006). Conductance quantization in mesoscopic graphene. Physical Review B, 73 (19). doi: 10.1103/physrevb.73.195411

Abanin, D. A., Lee, P. A., Levitov, L. S. (2006). Spin-Filtered Edge States and Quantum Hall Effect in Graphene. Physical Review Letters, 96 (17). doi: 10.1103/physrevlett.96.176803

Kubo, R. (1957). Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems. Journal of the Physical Society of Japan, 12 (6), 570–586. doi: 10.1143/jpsj.12.570

Yourgrau, W., van der Merwe, A., Raw, G. (1982). Treatise on Irreversible and Statistical Thermophysics. Dover, New York.

Krugljak, Ju. A. (2015). Model' provodimosti Landaujera – Datty – Lundstroma v mikro- i nanojelektronike i transportnoe uravnenie Bol'cmana. ScienceRise, 3/2 (8), 108–116. doi: 10.15587/2313-8416.2015.38848

Doniach, S., Sondheimer, E. H. (1998). Green’s Functions for Solid State Physicists. College Press London, 336. doi: 10.1142/p067

Blanter, Y. M., Büttiker, M. (2000). Shot noise in mesoscopic conductors. Physics Reports, 336 (1-2), 1–166. doi: 10.1016/s0370-1573(99)00123-4

Hasan, M. Z., Kane, C. L. (2010). Colloquium: Topological insulators. Reviews of Modern Physics, 82 (4), 3045–3067. doi: 10.1103/revmodphys.82.3045

Krugljak, Ju. A., Prejss, H., Janoshek, R. (1971). Raschet jelektronnyh obolochek benzil'nogo radikala neogranichennym metodom Hartri – Foka na gaussovom bazise. Zh. strukt. him., 12 (4), 689–696.

Krugljak, Ju. A. (2014). Generalized Landauer-Datta-Lundstrom model of electron and heat transport for micro- and nanoelectronics. ScienceRise, 5/3 (5), 6–21. doi: 10.15587/2313-8416.2014.30726

Kruglyak, Y. A., Ukrainsky, I. I. (1970). Study of the electronic structure of alternant radicals by theDODS method. International Journal of Quantum Chemistry, 4 (1), 57–72. doi: 10.1002/qua.560040106

Kruglyak, Yu. A. (2015). Quantum-chemical studies of quasi-one-dimensional electron systems. 1. Polyenes. ScienceRise, 5/2 (10), 69–105. doi: 10.15587/2313-8416.2015.42643

Rashba, E. I. (1960). Properties of semiconductors with an extremum loop . 1. Cyclotron and combinational resonance in a magnetic field perpendicular to the plane of the loop. Sov. Phys. Solid. State., 2, 1109.

Bychkov, Y. A., Rashba, E. I. (1984). Oscillatory effects and the magnetic susceptibility of carriers in inversion layers. Journal of Physics C: Solid State Physics, 17 (33), 6039–6045. doi: 10.1088/0022-3719/17/33/015

Winkler, R. (2003). Spin-Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems. Berlin: Springer, 228. doi: 10.1007/b13586

Hanle, W. (1924). Uber magnetische Beeinflussung der Polarisation der Resonanzfluoreszenz. Zeitschrift for Physik, 30 (1), 93–105. doi: 10.1007/bf01331827

Van Dyck, R., Stoltenberg, J. Pengra, D. (2006). The Hanle Effect. – Washington: The University of Washington.

Huang, B., Jang, H.-J., Appelbaum, I. (2008). Geometric dephasing-limited Hanle effect in long-distance lateral silicon spin transport devices. Applied Physics Letters, 93 (16), 162508. doi: 10.1063/1.3006333

Koo, H. C., Kwon, J. H., Eom, J., Chang, J., Han, S. H., Johnson, M. (2009). Control of Spin Precession in a Spin-Injected Field Effect Transistor. Science, 325 (5947), 1515–1518. doi: 10.1126/science.1173667

Wunderlich, J., Park, B.-G., Irvine, A. C., Zarbo, L. P., Rozkotova, E., Nemec, P et. al (2010). Spin Hall Effect Transistor. Science, 330 (6012), 1801–1804. doi: 10.1126/science.1195816

Sih, V., Lau, W. H., Myers, R. C., Horowitz, V. R., Gossard, A. C., Awschalom, D. D. (2006). Generating Spin Currents in Semiconductors with the Spin Hall Effect. Physical Review Letters, 97 (9). doi: 10.1103/physrevlett.97.096605

Fundamentals of nanoelectronics – quantum models. Available at: http://nanohub.org/courses/FoN2

PurdueX. Free online courses from Purdue University. Available at: https://www.edx.org/school/purduex


GOST Style Citations


1. Hall, E. H. On a New Action of the Magnet on Electric Currents [Text] / E. H. Hall // American Journal of Mathematics. – 1879. – Vol. 2, Issue 3. – P. 287–292. doi: 10.2307/2369245

2. Klitzing, K. V. New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance [Text] / K. V. Klitzing, G. Dorda, M. Pepper // Physical Review Letters. – 1980. – Vol. 45, Issue 6. – P. 494–497. doi: 10.1103/physrevlett.45.494

3. фон Клитцинг, К. Квантовый эффект Холла: Нобелевские лекции по физике [Текст] / К. фон Клитцинг // УФН. – 1985. – Т. 150, №. 1. – С. 107–126.

4. Reedtz, G. M. An automated potentiometric system for precision measurement of the quantized hall resistance [Text] / G. M. Reedtz, M. E. Cage // Journal of Research of the National Bureau of Standards. – 1987. – Vol. 92, Issue 5. – P. 303–310. doi: 10.6028/jres.092.030

5. Tsui, D. S. Two-dimensional magnetotransport in the extreme quantum limit [Text] / D. C. Tsui, H. L. Stormer, A. C. Gossard // Physical Review Letters. – 1982. – Vol. 48, Issue 22. – P. 1559–1962. doi: 10.1103/physrevlett.48.1559

6. Степановский, Ю. П. Дробный квантовый эффект Холла [Текст] / Ю. П. Степановский // Электромагнитные явления. – 1998. – Т. 1, № 3. – С. 427–442.

7. Nagaosa, N. Anomalous Hall effect [Text] / N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, N. P. Ong // Reviews of Modern Physics. – 2010. – Vol. 82, Issue 2. – 1539–1592. doi: 10.1103/revmodphys.82.1539

8. Dyakonov, M. I. Possibility of orientating electron spins with current [Text] / M. I. Dyakonov, V. I. Perel // Sov. Phys. JETP Lett. – 1971. – Vol. 13. – P. 467.

9. Dyakonov, M. I. Current-induced spin orientation of electrons in semiconductors [Text] / M. I. Dyakonov, V. I. Perel // Physics Letters A. – 1971. – Vol. 35, Issue 6. – P. 459–460. doi: 10.1016/0375-9601(71)90196-4

10. Kane, C. L. Quantum Spin Hall Effect in Graphene [Text] / C. L. Kane, E. J. Mele // Physical Review Letters. – 2005. – Vol. 95, Issue 22. doi: 10.1103/physrevlett.95.226801

11. Srinivasan, S. All-Spin Logic Device With Inbuilt Nonreciprocity [Text] / S. Srinivasan, A. Sarkar, B. Behin-Aein, S. Datta // IEEE Transactions on Magnetics. – 2011. – Vol. 47, Issue 10. – P. 4026–4032. doi: 10.1109/tmag.2011.2159106

12. Kane, C. L. Topological Insulators [Text] / C. Kane, J. Moore // Physics World. – 2011. – Vol. 24, Issue 02. – P. 32–36. doi: 10.1088/2058-7058/24/02/36

13. Datta, S. Lessons from Nanoelectronics: A New Perspective on Transport [Text] / S. Datta. – Hackensack, New Jersey: World Scientific Publishing Company, 2012. – 492 p. doi: 10.1142/8029

14. Кругляк, Ю. А. Наноэлектроника «снизу – вверх»: Возникновение тока, обобщенный закон Ома, упругий резистор, моды проводимости, термоэлектричество [Текст] / Ю. А. Кругляк // ScienceRise. – 2015. – T. 7, № 2 (12). – С. 76–100. doi: 10.15587/2313-8416.2015.45700

15. Кругляк Ю. О. Уроки наноелектроніки: виникнення струму, формулювання закону Ома і моди провідності в концепції «знизу – вгору» [Текст] / Ю. О. Кругляк, Н. Ю. Кругляк, М. В. Стріха // Сенсор. електр. мікросист. техн. – 2012. – Т. 9, № 4. – С. 5–29. – Режим доступу: http://dspace.onu.edu.ua:8080/handle/123456789/3643

16. Ашкрофт, Н. Физика твердого тела. Т. 1-2 [Текст] / Н. Ашкрофт, Н. Мермин. – М: Мир, 1979. – 458 c.; 486 c.

17. Rashba, E. I. Spin Currents in Thermodynamic Equilibrium: The Challenge of Discerning Transport Currents [Text] / E. I. Rashba // Physical Review B. – 2003. – Vol. 68, Issue 24. doi: 10.1103/physrevb.68.241315

18. Buttiker, M. Symmetry of Electrical Conduction [Text] / M. Buttiker // IBM Journal of Research and Development. – 1988. – Vol. 32, Issue 3. – P. 317–334. doi: 10.1147/rd.323.0317

19. Кругляк, Ю. А. Наноэлектроника «снизу – вверх»: Метод неравновесных функций Грина, модельные транспортные задачи и квантовая интерференция [Текст] / Ю. А. Кругляк // ScienceRise. – 2015. – T. 9, № 2 (14). – С. 41–72. doi: 10.15587/2313-8416.2015.48827

20. Кругляк, Ю. А. Графен в транспортной модели Ландауэра – Датты – Лундстрома [Текст] / Ю. А. Кругляк // ScienceRise. – 2015. – Т. 2, № 2 (7). – С. 93–106. doi: 10.15587/2313-8416.2015.36443

21. Кругляк, Ю. А. Наноэлектроника «снизу – вверх»: Начала спинтроники и магнетроники [Текст] / Ю. А. Кругляк // ScienceRise. – 2015. – T. 8, № 2 (13). – С. 51–68. doi: 10.15587/2313-8416.2015.47792

22. Sears, F. W. Thermodynamics, Kinetic Theory, and Statistical Thermodynamics [Text] / F. W. Sears, G. L. Salinger. – Boston: Addison-Wesley, 1975.

23. Landauer, R. Spatial variation of currents and fields due to localized scatterers in metallic conduction [Text] / R. Landauer // IBM Journal of Research and Development. – 1957. – Vol. 1, Issue 3. – P. 223–231. doi: 10.1147/rd.13.0223

24. Landauer, R. Electrical resistance of disordered one-dimensional lattices [Text] / R. Landauer // Philosophical Magazine. – 1970. – Vol. 21, Issue 172. – P. 863–867. doi: 10.1080/14786437008238472

25. Laundauer, R. Spatial variation of currents and fields due to localized scatterers in metallic conduction [Text] / R. Laundauer // IBM Journal of Research and Development. – 1988. – Vol. 32, Issue 3. – P. 306–316. doi: 10.1147/rd.323.0306

26. Landauer, R. Spatial variation of currents and fields due to localized scatterers in metallic conduction (and comment) [Text] / R. Landauer // Journal of Mathematical Physics. – 1996. – Vol. 37, Issue 10. – P. 5259. doi: 10.1063/1.531590

27. Buttiker, M. Four-terminal phase-coherent conductance [Text] / M. Buttiker // Physical Review Letters. – 1986. – Vol. 57, Issue 14. – P. 1761–1764. doi: 10.1103/physrevlett.57.1761

28. Шарвин, Ю. В. Об одном возможном методе исследования поверхности Ферми [Tекст] / Ю. В. Шарвин // ЖЭТФ. – 1965. – Т. 48, № 3. – С. 984–985.

29. Sharvin, Yu.V. Investigation of Focusing of Electron Beams in a Metal by a Longitudinal Magnetic Field [Text] / Yu. V. Sharvin, N. I. Bogatina // Zh. Eksp. Teor. Fiz. – 1969. – Vol. 56, Issue 3. – P. 772–779.

30. Imry, Y. Directions in Condensed Matter Physics [Text] / Y. Imry; G. Grinstein, G. Mazenko (Eds.). – Singapore: World Scientific, 1986. – 101 p.

31. Imry, Y. Laundauer Rolf. Conductance viewed as transmission [Text] / Y. Imry, R. Landauer // Reviews of Modern Physics. – 1999. – Vol. 71, Issue 2. – P. S306 – S312. doi: 10.1103/revmodphys.71.s306

32. Лесовик, Г. Б. Описание квантового электронного транспорта с помощью матриц рассеяния [Текст] / Г. Б. Лесовик, И. А. Садовский // УФН. – 2011. – Т. 181, № 10. – С. 1041–1096. doi: 10.3367/ufnr.0181.201110b.1041 

33. Stone, A. D. What is measured when you measure a resistance? – The Landauer formula revisited [Text] / A. D. Stone, A. Szafer // IBM Journal of Research and Development. – 1988. – Vol. 32, Issue 3. – P. 384–413. doi: 10.1147/rd.323.0384

34. Mojarad, R. G. Atomistic non-equilibrium Green's function simulations of graphene nano-ribbons in the quantum hall regime [Text] / R. Golizadeh-Mojarad, A. N. M. Zainuddin, G. Klimeck, S. Datta // Journal of Computational Electronics. – 2008. – Vol. 7, Issue 3. – P. 407–410. doi: 10.1007/s10825-008-0190-x

35. Haug, R. J. Edge-state transport and its experimental consequences in high magnetic fielgs [Text] / R. J. Haug // Semiconductor Science and Technology. – 1993. – Vol. 8, Issue 2. – P. 131–153. doi: 10.1088/0268-1242/8/2/001

36. Cage, M. E. Current Distributions in Quantum Hall Effect Devices [Text] / M. E. Cage // Journal of Research of the National Institute of Standards and Technology. – 1997. – Vol. 102, Issue 6. – P. 677–691. doi: 10.6028/jres.102.045

37. Мартинес-Дуарт, Дж. М. Нанотехнологии для микро- и оптоэлектроники [Текст] / Дж. М. Мартинес-Дуарт, Р. Дж. Мартин-Палма, Ф. Агулло-Руеда. – Москва: Техносфера, 2007. – 368 с.

38. Berger, C. Electronic Confinement and Coherence in Patterned Epitaxial Graphene [Text] / C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud et. al // Science. – 2006. – Vol. 312, Issue 5777. – P. 1191–1196. doi: 10.1126/science.1125925

39. Brey, L. Edge states and quantized Hall effect in Graphene [Text] / L. Brey, H. A. Fertig // Physical Review B. – 2006. – Vol. 73, Issue 19. doi: 10.1103/physrevb.73.195408

40. Peres, N. M. Conductance quantization in mesoscopic graphene [Text] / N. M. R. Peres, A. H. Castro Neto, F. Guinea // Physical Review B. – 2006. – Vol. 73, Issue 19. doi: 10.1103/physrevb.73.195411

41. Abanin, D. A. Spin-filtered edge states and quantum Hall effect in Graphene [Text] / D. A. Abanin, P. A. Lee, L. S. Levitov // Physical Review Letters. – 2006. – Vol. 96, Issue 17. doi: 10.1103/physrevlett.96.176803

42. Kubo, R. Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems [Text] / R. Kubo // Journal of the Physical Society of Japan. – 1957. – Vol. 12, Issue 6. – P. 570–586. doi: 10.1143/jpsj.12.570

43. Yourgrau, W. Treatise on Irreversible and Statistical Thermophysics [Text] / W. Yourgrau, A. van der Merwe, G. Raw. – Dover, New York, 1982.

44. Кругляк, Ю. А. Модель проводимости Ландауэра – Датты – Лундстрома в микро- и наноэлектронике и транспортное уравнение Больцмана [Текст] / Ю. А. Кругляк // ScienceRise. – 2015. – T. 3, № 2 (8). – С. 108–116. doi: 10.15587/2313-8416.2015.38848

45. Doniach, S. Green’s Functions for Solid State Physicists [Text] / S. Doniach, E. H. Sondheimer. – College Press London, 1998. – 336 p. doi: 10.1142/p067

46. Blanter, Ya. M. Shot noise in mesoscopic conductors [Text] / Ya. M. Blanter, M. Büttiker // Physics Reports. – 2000. – Vol. 336, Issue 1-2. – P. 1–166. doi: 10.1016/s0370-1573(99)00123-4

47. Hasan, M. Z. Colloquium: Topological insulators [Text] / M. Z. Hasan, C. L. Kane // Reviews of Modern Physics. – 2010. – Vol. 82, Issue 4. – P. 3045–3067. doi: 10.1103/revmodphys.82.3045

48. Кругляк, Ю. А. Расчет электронных оболочек бензильного радикала неограниченным методом Хартри – Фока на гауссовом базисе [Текст] / Ю. А. Кругляк, Х. Прейсс, Р. Яношек // Ж. структ. хим. – 1971. – Т. 12, № 4. – С. 689–696.

49. Кругляк, Ю. А. Обобщенный метод Хартри – Фока и его версии: от атомов и молекул до полимеров [Текст] / Ю. А. Кругляк // ScienceRise. – 2014. – Т. 5, № 3 (5). – C. 6–21. doi: 10.15587/2313-8416.2014.30726

50. Kruglyak, Y. A. Study of the electronic structure of alternant radicals by the DODS method [Text] / Y. A. Kruglyak, I. I. Ukrainsky // International Journal of Quantum Chemistry. – 1970. – Vol. 4, Issue 1. – P. 57–72. doi: 10.1002/qua.560040106

51. Kruglyak, Yu. A. Quantum-chemical studies of quasi-one-dimensional electron systems. 1. Polyenes [Text] / Yu. A. Kruglyak // ScienceRise. – 2015. – Vol. 5, Issue 2 (10). – P. 69–105. doi: 10.15587/2313-8416.2015.42643

52. Рашба, Э. И. Свойства полупроводников с петлей экстремумов. I. Циклотронный и комбинированный резонанс в магнитном поле, перпендикулярном плоскости петли [Текст] / Э. И. Рашба // ФТТ. – 1960. – Т. 2, № 6. – С. 1224–1238.

53. Bychkov, Yu. A. Oscillatory effects and the magnetic susceptibility of carriers in inversion layers [Text] / Yu. A. Bychkov, E. I. Rashba // Journal of Physics C: Solid State Physics. – 1984. – Vol. 17, Issue 33. – P. 6039–6045. doi: 10.1088/0022-3719/17/33/015

54. Winkler, R. Spin-Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems [Text] / R. Winkler. – Berlin: Springer, 2003. – 228 p. doi: 10.1007/b13586

55. Hanle, W. Uber magnetische Beeinflussung der Polarisation der Resonanzfluorescenz [Text] / W. Hanle // Zeitschrift for Physik. – 1924. – Vol. 30, Issue 1. – P. 93–105. doi: 10.1007/bf01331827

56. Van Dyck, R. The Hanle Effect [Text] / R. Van Dyck, J. Stoltenberg, D. Pengra. – Washington: The University of Washington. – 2006.  

57. Huang, B. Geometric dephasing-limited Hanle effect in long distance lateral silicon spin transport devices [Text] / B. Huang, H.-J. Jang, I. Appelbaum // Applied Physics Letters. – 2008. – Vol. 93, Issue 16. – P. 162508. doi: 10.1063/1.3006333

58. Koo, H. C. Control of Spin Precession in a Spin-Injected Field Effect Transistor [Text] / H. C. Koo, J. H. Kwon, J. Eom, J. Chang, S. H. Han, M. Johnson // Science. – 2009. – Vol. 325, Issue 5947. – P. 1515–1518. doi: 10.1126/science.1173667 

59. Wunderlich, J. Spin Hall Effect Transistor [Text] / J. Wunderlich, B.-G. Park, A. C. Irvine, L. P. Zarbo, E. Rozkotova, P. Nemec et. al // Science. – 2010. – Vol. 330, Issue 6012. – P. 1801–1804. doi: 10.1126/science.1195816

60. Sih, V. Generating Spin Currents in Semiconductors with the Spin Hall Effect [Text] / V. Sih, W. H. Lau, R. C. Myers, V. R. Horowitz, A. C. Gossard, D. D. Awschalom // Physical Review Letters. – 2006. – Vol. 97, Issue 9. doi: 10.1103/physrevlett.97.096605

61. Fundamentals of nanoelectronics – quantum models [Electronic resource]. – Available at: http://nanohub.org/courses/FoN2

62. PurdueX [Electronic resource]. – Free online courses from Purdue University. – Available at: https://www.edx.org/school/purduex



Comments on this article

View all comments




Copyright (c) 2015

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN 2313-8416 (Online), ISSN 2313-6286 (Print)