Influence of mesenchymal stem cells on tumor cells of breast cancer in non-contact co-cultivation

Authors

  • Олена Михайлівна Перепелиціна DBTPD of Institute of Cryobiology and Cryomedicine of NAS of Ukraine 42/1 Nauki ave., Kyiv, Ukraine, 03028, Ukraine https://orcid.org/0000-0002-5485-658X
  • Олена Вікторівна Ястребова DBTPD of Institute of Cryobiology and Cryomedicine of NAS of Ukraine 42/1 Nauki ave., Kyiv, Ukraine, 03028, Ukraine https://orcid.org/0000-0003-3937-2461
  • Сергій Васильович Безуглий DBTPD of Institute of Cryobiology and Cryomedicine of NAS of Ukraine 42/1 Nauki ave., Kyiv, Ukraine, 03028, Ukraine https://orcid.org/0000-0003-4827-7140
  • Михайло Васильович Сидоренко DBTPD of Institute of Cryobiology and Cryomedicine of NAS of Ukraine 42/1 Nauki ave., Kyiv, Ukraine, 03028, Ukraine https://orcid.org/0000-0003-1474-4898

DOI:

https://doi.org/10.15587/2313-8416.2015.51365

Keywords:

mesenchymal stem cells, estrogen receptor, EGFR, cytokeratin, E-cadherin

Abstract

In the present work were determined the kinetic parameters of the growth of human tumor cells (MCF-7) in vitro when co-cultured with MSCs, estimated levels of expression of some tumor markers by tumorigenic cells (estrogen receptor, EGF receptor, cytokeratin and E-cadherin) under the influence of human MSCs, and conducted a comparative analysis of the above parameters at different stages of cultivation in suspension and adhesion culture fractions

Author Biographies

Олена Михайлівна Перепелиціна, DBTPD of Institute of Cryobiology and Cryomedicine of NAS of Ukraine 42/1 Nauki ave., Kyiv, Ukraine, 03028

PhD, Senior Researcher

Laboratory morphogenetic factors microenvironment

Олена Вікторівна Ястребова, DBTPD of Institute of Cryobiology and Cryomedicine of NAS of Ukraine 42/1 Nauki ave., Kyiv, Ukraine, 03028

PhD, Researcher

Laboratory morphogenetic factors microenvironment

Сергій Васильович Безуглий, DBTPD of Institute of Cryobiology and Cryomedicine of NAS of Ukraine 42/1 Nauki ave., Kyiv, Ukraine, 03028

Ph.D., Junior Researcher

Laboratory diagnosis of the state of morphogenesis

Михайло Васильович Сидоренко, DBTPD of Institute of Cryobiology and Cryomedicine of NAS of Ukraine 42/1 Nauki ave., Kyiv, Ukraine, 03028

PhD, Head of the Laboratory

Laboratory diagnosis of the state of morphogenesis

References

Ivaniyk, D. I., Turchin, V. V., Popandopyla, А. G. et. al (2011). Мehanizmu immunomoduliryyschego deystvia mesenhimalnuh stvolovuh kletok [The mechanisms of immunomodulatory effects of mesenchymal stem cells]. Transplantatologiya Cell and Tissue Engineering, 2, 27–33.

Кalinina, N. I., Susoeva, E. Yu., Rubina, K. A. et. al (2010). Mesenhimalnue stvolovue kletki v processah rosta i reparacii tkaney [Mesenchymal stem cells in the growth and repair of tissues]. Acta Naturae, 4 (11), 32–39.

Lusianuy N.I. (2013). Mesenhimalnue stvolovue kletki i cancerogenez [mesenchymal stem cells and carcinogenesis]. Оncology, 1, 4–8.

Betancourt, A. M., Waterman, R. S. (2012). The Role of Mesenchymal Stem Cells in the Tumor Microenvironment. Tumor Microenvironment and Myelomonocytic Cells. New Orleans, Louisiana, USA, 298. doi: 10.5772/31933

Gomes С. (2013). The dual role of mesenchymal stem cells in tumor progression. Stem Cell Research & Therapy, 4 (42), 1206–1217. doi: 10.1186/scrt189

Kéramidas, M., de Fraipont, F., Karageorgis, A. et. al (2013). The dual effect of mscs on tumour growth and tumour angiogenesis. Stem Cell Research & Therapy, 4 (2), 41. doi: 10.1186/scrt195

Zheng, P.-X., Zhou, H., Tan, J.-M. (2013). Impact of mesenchymal stem cells on the proliferation, invasion and biological behaviors of hepatocellular carcinoma cells. Chinese Journal of Tissue Engineering Research, 17 (36), 6521–6526.

Zwaginga, J., Doevendans, P. (2003). Stem cell-derived angiogenic/vasculogenic cells: Possible therapies for tissue repair and tissue engineering. Clinical and Experimental Pharmacology and Physiology, 30 (11), 900–908. doi: 10.1046/j.1440-1681.2003.03931.x

Chamberlain, G., Fox, J., Ashton, B., Middleton, J. (2007). Concise Review: Mesenchymal Stem Cells: Their Phenotype, Differentiation Capacity, Immunological Features, and Potential for Homing. Stem Cells, 25 (11), 2739–2749. doi: 10.1634/stemcells.2007-0197

Krampera, M., Pasini, A., Pizzolo, G., Cosmi, L., Romagnani, S., Annunziato, F. (2006). Regenerative and immunomodulatory potential of mesenchymal stem cells. Current Opinion in Pharmacology, 6 (4), 435–441. doi: 10.1016/j.coph.2006.02.008

Toubai, T., Paczesny, S., Shono, Y., Tanaka, J., Lowler, K., Malter, C. et. al (2009). Mesenchymal Stem Cells for Treatment and Prevention of Graft-Versus- Host Disease After Allogeneic Hematopoietic Cell Transplantation. Current Stem Cell Research & Therapy, 4 (4), 252–259. doi: 10.2174/157488809789649269

Ferrantini, M., Capone, I., Belardelli, F. (2007). Interferon-α and cancer: Mechanisms of action and new perspectives of clinical use. Biochimie, 89 (6-7), 884–893. doi: 10.1016/j.biochi.2007.04.006

Rizza, P., Morettia, F., Belardelli, F. (2010). Recent advances on the immunomodulatory effects of IFN-α: Implications for cancer immunotherapy and autoimmunity. Autoimmunity, 43 (3), 204–209. doi: 10.3109/08916930903510880

Suzdaltseva, Yu. G., Rubtsov, Yu. P. (2011). Vliyanee mesenhimalnuh stvolovuh kletok zshorovoy tkani na aktivatciyu limfotcitov perefericheskoy krovi in vitro [Influence of mesenchymal stem cells of adipose tissue on the activation of peripheral blood lymphocytes in vitro]. Stem cells and regenerative medicine, 4, 73–74.

Kinnaird, T., Stabile, E., Burnett, M. S., Lee, C. W., Barr, S., Fuchs, S., Epstein, S. E. (2004). Marrow-Derived Stromal Cells Express Genes Encoding a Broad Spectrum of Arteriogenic Cytokines and Promote In Vitro and In Vivo Arteriogenesis Through Paracrine Mechanisms. Circulation Research, 94 (5), 678–685. doi: 10.1161/01.res.0000118601.37875.ac

Plotnicov, E. Yu., Zorov, D. B., Suhih, G. T. (2009). Stvolovue kletki v regenerativnoy terapii serdechnuh zabo;ovaniy: rol' mezshkletochnuch vzaimodeystviy [Stem cells in regenerative therapy for heart disease: the role of cell-cell interactions]. Stem cells and regenerative medicine, 1, 43–49.

Bernardo, M. E., Zaffaroni, N., Novara, F., Cometa, A. M., Avanzini, M. A., Moretta, A. et. al (2007). Human Bone Marrow Derived Mesenchymal Stem Cells Do Not Undergo Transformation after Long-term In vitro Culture and Do Not Exhibit Telomere Maintenance Mechanisms. Cancer Research, 67 (19), 9142–9149. doi: 10.1158/0008-5472.can-06-4690

Han, X., Meng, X., Yin, Z., Rogers, A., Zhong, J., Rillema, P. et. al (2009). Inhibition of intracranial glioma growth by endometrial regenerative cells. Cell Cycle, 8 (4), 606–610. doi: 10.4161/cc.8.4.7731

Hida, N., Nishiyama, N., Miyoshi, S., Kira, S., Segawa, K., Uyama, T. et. al (2008). Novel Cardiac Precursor-Like Cells from Human Menstrual Blood-Derived Mesenchymal Cells. Stem Cells, 26 (7), 1695–1704. doi: 10.1634/stemcells.2007-0826

Motaln, H., Schichor, C., Lah, T. T. (2010). Human mesenchymal stem cells and their use in cell-based therapies. Cancer, 116 (11), 2519–2530. doi: 10.1002/cncr.25056

Salem, K., Thiemermann, C. (2010). Mesenchymal stromal cells: current understanding and clinical status. Stem Cells, 28 (3), 585–596. doi: 10.1002/stem.269

Wang, S., Qu, X., Zhao, R. (2012). Clinical applications of mesenchymal stem cells. Journal of Hematology & Oncology, 5 (1), 19. doi: 10.1186/1756-8722-5-19

Wolff, E. F., Gao, X.-B., Yao, K. V., Andrews, Z. B., Du, H., Elsworth, J. D., Taylor, H. S. (2011). Endometrial stem cell transplantation restores dopamine production in a Parkinson’s disease model. Journal of Cellular and Molecular Medicine, 15 (4), 747–755. doi: 10.1111/j.1582-4934.2010.01068.xx

Honoki, K. (2011). Cancer Stem Cell Nich: Stem cells in tumor microenvironment. Cancer stem cells-the cuttinged edge, 10 (121), 189–203.

On claims of order of conducting preclinical study of medications and examinations of materials of preclinical study of medications: Order of Ministry of Health of Ukraine (2009). 14.12.09., 944. Available at: http://zakon.Rada.Gov.Ua/clibin/laws/mains.cgi?nreg=z0053-10/

Thomas, C., Gustafsson, J.-Å. (2011). The different roles of ER subtypes in cancer biology and therapy. Nat Rev Cancer, 11 (8), 597–608. doi: 10.1038/nrc3093

Jazieh, A. R, Kyasa, M. J., Hutchins, L. (2004). Phase I clinical trial of tamoxifen and interferon alpha in the treatment of solid tumors. Journ. Appl. Res., 4, 464–469.

Suo, Z., Risberg, B., Karlsson, M. G., Villman, K., Skovlund, E., Nesland, J. M. (2002). The Expression of EGFR Family Ligands in Breast Carcinomas. International Journal of Surgical Pathology, 10 (2), 91–99. doi: 10.1177/106689690201000202

Lewis-Wambi, J. S., Jordan, V. C. (2009). Estrogen regulation of apoptosis: how can one hormone stimulate and inhibit? Breast Cancer Research, 11 (3), 206. doi: 10.1186/bcr2255

Woodburn, J. (1999). The Epidermal Growth Factor Receptor and Its Inhibition in Cancer Therapy. Pharmacology & Therapeutics, 82 (2-3), 241–250. doi: 10.1016/s0163-7258(98)00045-x

Saha Roy, S., Vadlamudi, R. K. (2012). Role of Estrogen Receptor Signaling in Breast Cancer Metastasis. International Journal of Breast Cancer, 2012, 1–8. doi: 10.1155/2012/654698

Thomas, C., Gustafsson, J.-Å. (2011). The different roles of ER subtypes in cancer biology and therapy. Nat Rev Cancer, 11 (8), 597–608. doi: 10.1038/nrc3093

Cavallaro, U., Schaffhauser, B., Christofori, G. (2002). Cadherins and the tumour progression: is it all in a switch? Cancer Letters, 176 (2), 123–128. doi: 10.1016/s0304-3835(01)00759-5

Published

2015-10-29

Issue

Section

Biological sciences