Immune inflammation, endothelial dysfunction as factors of high cardiometabolic risk in patients with essential hypertension and dysglycemia




immune inflammation, essential hypertension, type 2 diabetes, interleukin-6, onkostatin M, endothelial dysfunction


The aim of the study was investigation of cytokines activity, parameters of vasoactive nitric oxide (NO) pool in patients (pts) with essential hypertension (EH) and disglicemia.

Methods: the study involved 92 pts with EH, aged 30–80. Clinical, biochemical, immune sorbent, statistic methods were used.

Results: the pts were divided into 3 age- and sex- matched groups according to carbohydrate metabolism disorders. Group 1 included 26 patients with EH and type 2 diabetes (T2D). Thirty- two pts with EH and prediabetes were included in group 2. Group 3 consisted of 34 pts with EH without carbohydrate disorders. Pts of groups 1 and 2 had higher systolic and diastolic arterial pressure, longer history of EH (р<0.05) comparing to group 3. Significant changes of carbohydrate profile were detected (р<0.05). Endothelial dysfunction was found in 97.83 %, it was characterized by decreased endothelial NO synthase (eNOS), increased inducible NO synthase (iNOS), s-nitrosothiol (sNO). Negative correlation of eNOS with age was significant (R=-0.33, р<0.05). iNOS correlated with fasting insulin and glycated hemoglobin in group 1. (R=0.81, R=0.38 respectively, р<0.05). In group 2 iNOS – postprandial glucose (R=0.35, р<0.05). In group 3 sNO correlated with postprandial glucose and insulin (R=0.26, R=0.28 respectively, р<0.05). Oncostatin M (OsM) and interleukin-6 (IL-6) levels were 3-15 folds greater than control and the highest were in group 3. OsM – fasting insulin (R=0.21), postprandial insulin (R=0.37), postprandial glucose (R=0.28), IL-6 (R=0.76), (р<0.05).

Conclusion: we speculate that metabolic determinants of type 2 diabetes can activate pathophysiologic cascade, leading to endothelial dysfunction and immune inflammation

Author Biography

Ганна Валеріївна Демиденко, Kharkiv National Medical University 4 Lenin avе., Kharkiv, Ukraine, 61022

Candidate of Medical Sciences, AssociateProfessor

Department of Propedeutics to Internal Medicine № 1, Basis of Bioethics and Biosafety


Kovalyova, O. M., Ambrosova, T. M., Ashcheulova, T. V. et. al (2014). Biomarkery kardiovasculyarnogo rysyky pry arterialnyi hipertensyii [Biomarkers of cardiovascular risk in arterial hypertension]. Kharkiv: Planet-print, 165.

Kovalyova, O. M., Ashcheulova, T. V., Demydenko, G. V., Sytina, I. V. (2011). Sertsevo-sudynnyi rysyk: stratiphikatzia, pathogenez, prognoz [Cardiovascular risk: stratification, pathogenesis, prognosis]. Kharkiv: Raritety Ukrainy, 224.

Selvin, E., Steffes, M. W., Zhu, H., Matsushita, K., Wagenknecht, L., Pankow, J. et. al (2010). Glycated hemoglobin, diabetes, and cardiovascular risk in nondiabetic adults. New England Journal of Medicine, 362 (9), 800–811. doi: 10.1056/nejmoa0908359

Tousoulis, D., Kampoli, A.-M., Stefanadis, C. (2012). Diabetes mellitus and vascular endothelial dysfunction: current perspectives. Current Vascular Pharmacology, 10 (1), 19–32. doi: 10.2174/157016112798829797

Tousoulis, D., Papageorgiou, N., Androulakis, E., Siasos, G., Latsios, G., Tentolouris, K., Stefanadis, C. (2013). Diabetes Mellitus-Associated Vascular Impairmen. Journal of the American College of Cardiology, 62 (8), 667–676. doi: 10.1016/j.jacc.2013.03.089

Kubin, T., Pöling, J., Kostin, S., Gajawada, P., Hein, S., Rees, W. et. al (2011). Oncostatin M is a major mediator of cardiomyocyte dedifferentiation and remodeling. Cell Stem Cell, 9 (5), 420–432. doi: 10.1016/j.stem.2011.08.013

Mancia, G., Laurent, S., Agabiti-Rosei, E., Ambrosioni, E., Burnier, M., Caulfield, M. J. et. al (2009). Reappraisal of European guidelines on hypertension management: a European Society of Hypertension Task Force document. Journal of Hypertension, 27 (11), 2121–2158. doi: 10.1097/hjh.0b013e328333146d

Definition and Diagnosis of Diabetes Mellitus and Intermediate Hyperglicemia: Report of WHO/IDF Consultation (2006). Geneva, World Health Organization, 46. Available at:

Kovalyova, O. M., Demydenko, G. V., Horbach, T. V. (2007). Diagnostika endotelialnoyi funktsii – otsinka vasoaktivnogo pyly oksidy asoty. [Diagnostics of endothelial function]. Kyiv, 19.

Prattichizzo, F., Giuliani, A., Ceka, A., Rippo, M. R., Bonfigli, A. R., Testa, R. et. al (2015). Epigenetic mechanisms of endothelial dysfunction in type 2 diabetes. Clinical Epigenetics, 7 (1). doi: 10.1186/s13148-015-0090-4

Tabit, C. E., Chung, W. B., Hamburg, N. M., Vita, J. A. (2010). Endothelial dysfunction in diabetes mellitus: Molecular mechanisms and clinical implications. Reviews in Endocrine and Metabolic Disorders, 11 (1), 61–74. doi: 10.1007/s11154-010-9134-4

Ketete, M., Cherqaoui, R., Maqbool, A. R., Kwagyan, J., Xu, S., Randall, O. S. (2013). Endothelial dysfunction: The contribution of diabetes mellitus to the risk factor burden in a high risk population. Journal of Biomedical Science and Engineering, 06 (06), 593–597. doi: 10.4236/jbise.2013.66075

Würtz, P., Tiainen, M., Makinen, V.-P., Kangas, A. J., Soininen, P., Saltevo, J. et. al (2012). Circulating Metabolite Predictors of Glycemia in Middle-Aged Men and Women. Diabetes Care, 35 (8), 1749–1756. doi: 10.2337/dc11-1838

Nieto-Vazquez, I., Fernandez-Veledo, S., de Alvaro, C., Lorenzo, M. (2008). Dual role of interleukin-6 in regulating insulin sensivity in murine skeletal muscle. Diabetes, 57 (12), 3211–3221. doi: 10.2337/db07-1062

Fève, B., Bastard, J.-P. (2009). The role of interleukins in insulin resistance and type 2 diabetes mellitus. Nature Reviews Endocrinology, 5 (6), 305–311. doi: 10.1038/nrendo.2009.62





Medical Science. Part 1