DOI: https://doi.org/10.15587/2313-8416.2016.58557

Nanoelectronics «bottom – up»: coulomb blocade and single-electron nanotransistor on benzene molecule

Юрій Олексійович Кругляк

Abstract


Coulomb blocade in singlelectronics is discussed under the «bottom – up» approach of modern nanoelectronics. The first-principle methods for calculating the charging molecular energies and charge stability diagram of the benzene molecule single-electron transistor under the Coulomb blockade regime were applied using the density-functional theory for modeling molecular properties and continuum model to describe single-electron transistor environment as well as a self-consistent approach to treat the interaction between the molecule and the environment


Keywords


nanophysics; nanoelectronics; molecular electronics; singlelectronics; Coulomb blocade; single-electron transistor

References


Kruglyak, Yu. O., Strikha, M. V. (2013). Lessons of nanoelectronics: non-equillibrium green’s functions method in matrix representation. I. Theory. Sensor Electronics and Мicrosystem Technologies, 10 (3), 22–35.

Kruglyak, Yu. O., Strikha, M. V. (2014). Lessons of nanoelectronics: quantum interference and dephasing in non-equillibrium Green’s functions method. Sensor Electronics and Мicrosystem Technologies, 11 (3), 5–18.

Kruglyak, Yu. O. (2015). Nanoelectronics «bottom – up»: Non-equillibrium Green’s functions method, model transport problems and quantum interference. ScienceRise, 9/2 (14), 41–72. doi: 10.15587/2313-8416.2015.48827

Kruglyak, Yu. O., Strikha, M. V. (2014). Lessons of nanoelectronics: Hall effect and measurement of electrochemical potentials within «bottom – up» approach. Sensor Electronics and Мicrosystem Technologies, 11 (1), 5–27.

Kruglyak, Yu. O., Strikha, M. V. (2014). Lessons of nanoelectronics: The role of electrostatics and contacts in «bottom–up» approach. Sensor Electronics and Мicrosystem Technologies, 11 (4), 27–42.

Kruglyak, Yu. O. (2015). Landauer – Datta – Lundstrom conductivity model in micro- and nanoelectronics and Boltzmann transport equation. ScienceRise, 3/2 (8), 108–116. doi: 10.15587/2313-8416.2015.38848

Danielewicz, P. (1984). Quantum theory of nonequilibrium processes, I. Annals of Physics, 152 (2), 239–304. doi: 10.1016/0003-4916(84)90092-7

Mahan, G. D. (1987). Quantum transport equation for electric and magnetic fields. Physics Reports, 145 (5), 251–318. doi: 10.1016/0370-1573(87)90004-4

Datta, S. (2005). Quantum Transport: Atom to Transistor. Cambridge: Cambridge University Press, 404. doi: 10.1017/cbo9781139164313

Kruglyak, Yu. O. (2015). Nanoelectronics «bottom – up»: the role of electrostatics and contacts. ScienceRise, 12/2 (17), 51–67. doi: 10.15587/2313-8416.2015.56272

Martin, P. C., Schwinger, J. (1959). Theory of Many-Particle Systems. I. Physical Review, 115 (6), 1342–1373. doi: 10.1103/physrev.115.1342

Kadanoff, L. P., Baym, G. (1962). Quantum Statistical Mechanics. New York: W. A. Benjamin, 203.

Keldysh, L. V. (1965). Diagram Technique for Non-Equilibrium Processes. Sov. Phys. JETP, 20, 1018.

Kryachko, E. S., Ludeña, E. V. (2014). Density functional theory: Foundations reviewed. Physics Reports, 544 (2), 123–239. doi: 10.1016/j.physrep.2014.06.002

Averin, D. V., Likharev, K. K. (1991). Single electronics: A correlated transfer of single electrons and Cooper pairs in systems of small tunnel junctions. Chap. 6. Mesoscopic Phenomena in Solids. New York: Elsevier, 173–271. doi: 10.1016/b978-0-444-88454-1.50012-7

Beenakker, C. W. J. (1991). Theory of Coulomb-blockade oscillations in the conductance of a quantum dot. Physical Review B, 44 (4), 1646–1656. doi: 10.1103/physrevb.44.1646

Grabert, H., Devoret, M. H. (Eds.) (1992). Single Charge Tunneling. Coulomb Blockade Phenomena In Nanostructures. New York: Plenum Press, 347. doi: 10.1007/978-1-4757-2166-9

Kruglyak, Yu. O. (2015). Nanoelectronics «bottom – up»: Current generation, generalized ohm’s law, elastic resistors, conductivity modes, thermoelectricity. ScienceRise, 7/2 (12), 76–100. doi: 10.15587/2313-8416.2015.45700

Kruglyak, Yu. O. (2014). The generalized hartree-fock method and its versions: from atoms and molecules to polymers. ScienceRise, 5/3 (5), 6–21. doi: 10.15587/2313-8416.2014.30726

Kruglyak, Yu. A. (2015). Quantum-chemical studies of quasi-one-dimensional electron systems. 1. Polyenes. ScienceRise, 5/2 (10), 69–105. doi: 10.15587/2313-8416.2015.42643

Kruglyak, Yu. A., Glushkov, A. V. et. al (2015). Quantum-mechanical studies of quasi-one-dimensional electron systems. Part 4, Chap. 2. Calculational Methods in Quantum Geometry and Chaos Theory. Odessa: TES Publishing House, 28–180. Available at: https://www.researchgate.net/publication/281811280_Quantum-mechanical_Studies_of_Quasi-One-Dimensional_Electron_Systems

Kruglyak, Yu. A., Kruglyak, N. E. (2011). Quantum-mechanical calculation of single-electron field transistor on benzene molecule Sensor Electronics and Microsystem Technologies, 8 (3), 60–70.

Krugljak, Ju. A., Krugljak, N. E. (2011). Odnojelektronnyj odnomolekuljarnyh polevoj tranzistor: kvantovomehanicheskoe i jelektrodinamicheskoe rassmotrenie na primere molekuly benzola. Vestnik Odesskogo gos. un-ta, 12, 201–214.

Kruglyak, Yu. O., Strikha, M. V. (2015). Lessons of nanoelectronics. The electric current and the second law of thermodynamics in the «bottom – up» approach. Sensor Electronics and Мicrosystem Technologies, 12 (2), 5–26.

Kruglyak, Yu. A. (2015). Nanoelectronics «bottom – up»: Thermodynamics of electric conductor, information-driven battery and quantum entropy. ScienceRise, 11/2 (16), 55–71. doi: 10.15587/2313-8416.2015.53495

Datta, S. (2012). Lessons from Nanoelectronics: A New Perspective on Transport. Hackensack, New Jersey: World Scientific Publishing Company, 492. doi: 10.1142/8029

Kruglyak, Yu. A. (2015). «Bottom – up» nanoelectronics: The Hall effects, measurement of electrochemical potentials and spin transport in the NEGF model. ScienceRise, 10/2 (15), 35–67. doi: 10.15587/2313-8416.2015.51353

Park, J., Pasupathy, A. N., Goldsmith, J. I., Chang, C., Yaish, Y., Petta, J. R. et. al (2002). Coulomb blockade and the Kondo effect in single-atom transistors. Nature, 417 (6890), 722–725. doi: 10.1038/nature00791

Liang, W., Shores, M. P., Bockrath, M., Long, J. R., Park, H. (2002). Kondo resonance in a single-molecule transistor. Nature, 417 (6890), 725–729. doi: 10.1038/nature00790

Kubatkin, S., Danilov, A., Hjort, M., Cornil, J., Brédas, J.-L., Stuhr-Hansen, N. et. al (2003). Single-electron transistor of a single organic molecule with access to several redox states. Nature, 425 (6959), 698–701. doi: 10.1038/nature02010

Osorio, E. A., O’Neill, K., Stuhr-Hansen, N., Nielsen, O. F., Bjørnholm, T., van der Zant, H. S. J. (2007). Addition Energies and Vibrational Fine Structure Measured in Electromigrated Single-Molecule Junctions Based on an Oligophenylenevinylene Derivative. Advanced Materials, 19 (2), 281–285. doi: 10.1002/adma.200601876

Danilov, A., Kubatkin, S., Kafanov, S., Hedegård, P., Stuhr-Hansen, N., Moth-Poulsen, K., Bjørnholm, T. (2008). Electronic Transport in Single Molecule Junctions: Control of the Molecule-Electrode Coupling through Intramolecular Tunneling Barriers. Nano Letters, 8 (1), 1–5. doi: 10.1021/nl071228o

Thijssen, J. M., Van der Zant, H. S. J. (2008). Charge transport and single-electron effects in nanoscale systems. Physica Status Solidi (b), 245 (8), 1455–1470. doi: 10.1002/pssb.200743470

Kaasbjerg, K., Flensberg, K. (2008). Strong Polarization-Induced Reduction of Addition Energies in Single-Molecule Nanojunctions. Nano Letters, 8 (11), 3809–3814. doi: 10.1021/nl8021708

Stokbro, K. (2010). First-Principles Modeling of Molecular Single-Electron Transistors. The Journal of Physical Chemistry C, 114 (48), 20461–20465. doi: 10.1021/jp104811r

Liang, W., Shores, M. P., Bockrath, M., Long, J. R., Park, H. (2002). Kondo resonance in a single-molecule transistor. Nature, 417 (6890), 725–729. doi: 10.1038/nature00790

Kouwenhoven, L. P., Marcus, C. M., McEuen, P. L., Tarucha, S., Westervelt, R. M., Wingreen, N. S. (1997). Electron Transport in Quantum Dots. Mesoscopic Electron Transport, 105–214. doi: 10.1007/978-94-015-8839-3_4

Meirav, U., Foxman, E. B. (1996). Single-electron phenomena in semiconductors. Semiconductor Science and Technology, 11 (3), 255–284. doi: 10.1088/0268-1242/11/3/003

Fulton, T. A., Dolan, G. J. (1987). Observation of single-electron charging effects in small tunnel junctions. Physical Review Letters, 59 (1), 109–112. doi: 10.1103/physrevlett.59.109

Scott-Thomas, J. H. F., Field, S. B., Kastner, M. A., Smith, H. I., Antoniadis, D. A. (1989). Conductance Oscillations Periodic in the Density of a One-Dimensional Electron Gas. Physical Review Letters, 62 (5), 583–586. doi: 10.1103/physrevlett.62.583

Reed, M., Randall, J., Aggarwal, R., Matyi, R., Moore, T., Wetsel, A. (1988). Observation of discrete electronic states in a zero-dimensional semiconductor nanostructure. Physical Review Letters, 60 (6), 535–537. doi: 10.1103/physrevlett.60.535

McEuen, P. L., Klein, D. L., Roth, R., Lim, A. K. L., Alivisatos, A. P. (1997). A Single Electron Transistor Made From Lead Cadmium Selenide Nanocrystals. Nature, 389 (6652), 699–701. doi: 10.1038/39535

Tans, S. J., Devoret, M. H., Dai, H., Thess, A., Smalley, R. E., Geerligs, L. J., Dekker, C. (1997). Individual single-wall carbon nanotubes as quantum wires. Nature, 386 (6624), 474–477. doi: 10.1038/386474a0

Bockrath, M. (1997). Single-Electron Transport in Ropes of Carbon Nanotubes. Science, 275 (5308), 1922–1925. doi: 10.1126/science.275.5308.1922

Kruglyak, Yu. (2014). Configuration interaction in the second quantization representation: basics with applications up tp full CI. ScienceRise, 4/2 (4), 98–115. doi: 10.15587/2313-8416.2014.28948

Kruglyak, Yu. A. (2015). Configuration interaction in the second quantization representation: basics with applications up tp full CI. Part 3, Chap. 2. Calculational Methods in Quantum Geometry and Chaos Theory. Odessa: TES Publishing House, 43–84.

Neugebauer, J., Scheffler, M. (1992). Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on Al(111). Physical Review B, 46 (24), 16067–16080. doi: 10.1103/physrevb.46.16067

Taylor, J., Guo, H., Wang, J. (2001). Ab initio modeling of quantum transport properties of molecular electronic devices. Physical Review B, 63 (24). doi: 10.1103/physrevb.63.245407

Soler, J. M., Artacho, E., Gale, J. D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D. (2002). The SIESTA method for ab initio order- N materials simulation. Journal of Physics: Condensed Matter, 14 (11), 2745–2779. doi: 10.1088/0953-8984/14/11/302

Brandbyge, M., Mozos, J.-L., Ordejón, P., Taylor, J., Stokbro, K. (2002). Density-functional method for nonequilibrium electron transport. Physical Review B, 65 (16). doi: 10.1103/physrevb.65.165401

Lide, D. R. (Ed.) (2010). Handbook of Chemistry and Physics. 90th Edition. CRC.

Gurvich, L. V., Karachevcev, G. V., Kondrat'ev, V. N., Lebedev, Ju. A., Medvedev, V. A., Potapov, V. K., Hodeev, Ju. S. (1974). Jenergii razryva himicheskih svjazej. Potencialy ionizacii i srodstvo k jelektronu. Moscow: Nauka, 351.

Rivière, J. C. (1966). The work function of gold. Applied Physics Letters, 8 (7), 172. doi: 10.1063/1.1754539

Lindner, R., Sekiya, H., Beyl, B., Müller-Dethlefs, K. (1993). Structure and Symmetry of the Benzene Cation. Angewandte Chemie International Edition in English, 32 (4), 603–606. doi: 10.1002/anie.199306031


GOST Style Citations


1. Кругляк, Ю. О. Уроки наноелектроніки: Метод нерівноважних функцій Гріна у матричному зображенні. 1. Теорія [Текст] / Ю. О. Кругляк, М. В. Стріха // Сенсорна електроніка і мікросистемні технології. – 2013. – Т. 10, № 3. – С. 22–35.

2. Кругляк, Ю. О. Уроки наноелектроніки: Квантова інтерференція і дефазування в методі нерівноважних функцій Гріна [Текст] / Ю. О. Кругляк, М. В. Стріха // Сенсорна електроніка і мікросистемні технології. – 2014. – Т. 11, № 3. – С. 5–18.

3. Кругляк, Ю. А. Наноэлектроника «снизу – вверх»: Метод неравновесных функций Грина, модельные транспортные задачи и квантовая интерференция [Текст] / Ю. А. Кругляк // ScienceRise. – 2015. – Т. 9, № 2 (14). – С. 41–72. doi: 10.15587/2313-8416.2015.48827

4. Кругляк, Ю. О. Уроки наноелектроніки: Ефект Холла і вимірювання електрохімічних потенціалів у концепції «знизу – вгору» [Текст] / Ю. О. Кругляк, М. В. Стріха // Сенсорна електроніка і мікросистемні технології. – 2014. – Т. 11, № 1. – С. 5–27.

5. Кругляк, Ю. О. Уроки наноелектроніки: Роль електростатики й контактів у концепції «знизу – вгору» [Текст] / Ю. О. Кругляк, М. В. Стріха // Сенсорна електроніка і мікросистемні технології. – 2014. – Т. 11, № 4. – С. 27–42.

6. Кругляк, Ю. А. Модель проводимости Ландауэра – Датты – Лундстрома в микро- и наноэлектронике и транспортное уравнение Больцмана [Текст] / Ю. А. Кругляк // ScienceRise. – 2015. – Т. 3, № 2 (8). – С. 108–116. doi: 10.15587/2313-8416.2015.38848

7. Danielewicz, P. Quantum theory of nonequilibrium processes, I [Text] / P. Danielewicz // Annals of Physics. – 1984. – Vol. 152, Issue 2. – P. 239–304. doi: 10.1016/0003-4916(84)90092-7

8. Mahan, G. D. Quantum Transport Equation for Electric and Magnetic Fields [Text] / G. D. Mahan // Physics Reports. – 1987. – Vol. 145, Issue 5. – P. 251–318. doi: 10.1016/0370-1573(87)90004-4

9. Datta, S. Quantum Transport: Atom to Transistor [Text] / S. Datta. – Cambridge: Cambridge University Press, 2005. – 404 p. doi: 10.1017/cbo9781139164313

10. Кругляк, Ю. А. Наноэлектроника «снизу – вверх»: Роль электростатики и контактов [Текст] / Ю. А. Кругляк // ScienceRise. – 2015. – Т. 12, № 2 (17). – С. 51–67. doi: 10.15587/2313-8416.2015.56272

11. Martin, P. C. Theory of many-particle systems. I [Text] / P. C. Martin, J. Schwinger // Physical Review. – 1959. – Vol. 115, Issue 6. – P. 1342–1373. doi: 10.1103/physrev.115.1342

12. Kadanoff, L. P. Quantum Statistical Mechanics [Text] / L. P. Kadanoff, G. Baym. – New York: W. A. Benjamin, 1962. – 203 p.

13. Келдыш, Л. В. Диаграммная техника для неравновесных процессов [Текст] / Л. В. Келдыш // ЖЭТФ. – 1964. – Т. 47. – С. 1515–1527.

14. Kryachko, E. S. Density functional theory: Foundations reviewed [Text] / E. S. Kryachko, E. V. Ludeña // Physics Reports. – 2014. – Vol. 544, Issue 2. – P. 123–239. doi: 10.1016/j.physrep.2014.06.002

15. Averin, D. V. Single electronics: A correlated transfer of single electrons and Cooper pairs in systems of small tunnel junctions. Chap. 6 [Text] / D. V. Averin, K. K. Likharev. – Mesoscopic Phenomena in Solids. – New York: Elsevier, 1991. – P. 173–271. doi: 10.1016/b978-0-444-88454-1.50012-7

16. Beenakker, C. W. J. Theory of Coulomb-Blockade Oscillations in the Conductance of a Quantum Dot [Text] / C. W. J. Beenakker // Physical Review B. – 1991. – Vol. 44, Issue 4. – P. 1646–1656. doi: 10.1103/physrevb.44.1646

17. Single Charge Tunneling. Coulomb Blockade Phenomena In Nanostructures [Text] / H. Grabert, M. H. Devoret (Eds.). – New York: Plenum Press. – 1992. – 347 p. doi: 10.1007/978-1-4757-2166-9

18. Кругляк, Ю. А. Наноэлектроника «снизу – вверх»: Возникновение тока, обобщенный закон Ома, упругий резистор, моды проводимости, термоэлектричество [Текст] / Ю. А. Кругляк // ScienceRise. – 2015. – Т. 7, № 2 (12). – С. 76–100. doi: 10.15587/2313-8416.2015.45700

19. Кругляк, Ю. А. Обобщенный метод Хартри – Фока и его версии: от атомов и молекул до полимеров [Текст] / Ю. А. Кругляк // ScienceRise. – 2014. – Т. 5, № 3 (5). – С. 6–21. doi: 10.15587/2313-8416.2014.30726

20. Kruglyak, Yu. A. Quantum-chemical studies of quasi-one-dimensional electron systems. 1. Polyenes [Text] / Yu. A. Kruglyak // ScienceRise. – 2015. – Vol. 5, Issue 2 (10). – P. 69–105. doi: 10.15587/2313-8416.2015.42643

21. Kruglyak, Yu. A. Quantum-mechanical studies of quasi-one-dimensional electron systems. Part 4, Chap. 2 [Text] / Yu. A. Kruglyak, A. V. Glushkov et. al. – Calculational Methods in Quantum Geometry and Chaos Theory. – Odessa: TES Publishing House, 2015. – P. 28–180. – Available at: https://www.researchgate.net/publication/281811280_Quantum-mechanical_Studies_of_Quasi-One-Dimensional_Electron_Systems

22. Кругляк, Ю. А. Квантовомеханический расчет одноэлектронного полевого транзистора на молекуле бензола [Текст] / Ю. А. Кругляк, Н. Е. Кругляк // Сенсорна електронiка i мiкросистемнi технологiї. – 2011. – Т. 8, № 3. – С. 60–70.

23. Кругляк, Ю. А. Одноэлектронный одномолекулярных полевой транзистор: квантовомеханическое и электродинамическое рассмотрение на примере молекулы бензола [Текст] / Ю. А. Кругляк, Н. Е. Кругляк // Вестник Одесского гос. ун-та. – 2011. – Вып. 12. – С. 201–214.

24. Кругляк, Ю. О. Уроки наноелектроніки: Електричний струм і другий закон термодинаміки у концепції «знизу – вгору» [Текст] / Ю. О. Кругляк, М. В. Стріха // Сенсорна електроніка і мікросистемні технології. – 2015. – Т. 12, № 2. – С. 5–26.

25. Кругляк, Ю. А. Наноэлектроника «снизу – вверх»: Термодинамика проводника с током, информационно-управляемый акумулятор и квантовая энтропия [Текст] / Ю. А. Кругляк // ScienceRise. – 2015. – Т. 11, № 2 (16). – С. 55–71. doi: 10.15587/2313-8416.2015.53495

26. Datta, S. Lessons from Nanoelectronics: A New Perspective on Transport [Text] / S. Datta. – Hackensack, New Jersey: World Scientific Publishing Company, 2012. – 492 р. doi: 10.1142/8029

27. Кругляк, Ю. А. Эффекты Холла, измерение электрохимических потенциалов и транспорт спинов в модели НРФГ [Текст] / Ю. А. Кругляк // ScienceRise. – 2015. – Т. 10, № 2 (15). – С. 35–67. doi: 10.15587/2313-8416.2015.51353

28. Park, J. Coulomb blockade and the Kondo effect in single-atom transistors [Text] / J. Park, A. N. Pasupathy, J. I. Goldsmith, C. Chang, Y. Yaish, J. R. Petta et. al // Nature. – 2002. – Vol. 417, Issue 6890. – P. 722–725. doi: 10.1038/nature00791

29. Liang, W. Kondo resonance in a single-molecule transistor [Text] / W. Liang, M. P. Shores, M. Bockrath, J. R. Long, H. Park // Nature. – 2002. – Vol. 417, Issue 6890. – P. 725–729. doi: 10.1038/nature00790

30. Kubatkin, S. Single-electron transistor of a single organic molecule with access to several redox states [Text] / S. Kubatkin, A. Danilov, M. Hjort, J. Cornil, J.-L. Brédas, N. Stuhr-Hansen et. al // Nature. – 2003. – Vol. 425, Issue 6959. – P. 698–701. doi: 10.1038/nature02010

31. Osorio, E. A. Addition energies and vibrational fine structure measured in electromigrated single-molecule junctions based on an oligophenylenevinylene derivative [Text] / E. A. Osorio, K. O'Neill, N. Stuhr-Hansen, O. F. Nielsen, T. Bjørnholm, H. S. J. van der Zant // Advanced Materials. – 2007. – Vol. 19, Issue 2. – P. 281–285. doi: 10.1002/adma.200601876

32. Danilov, A. Electronic Transport in Single Molecule Junctions: Control of the Molecule-Electrode Coupling through Intramolecular Tunneling Barriers [Text] / A. Danilov, S. Kubatkin, S. Kafanov, P. Hedegård, N. Stuhr-Hansen, K. Moth-Poulsen, T. Bjørnholm // Nano Letters. – 2008. – Vol. 8, Issue 1. – P. 1–5. doi: 10.1021/nl071228o

33. Thijssen, J. M. Charge transport and single-electron effects in nanoscale systems [Text] / J. M. Thijssen, H. S. J. Van der Zant // Physica Status Solidi (b). – 2008. – Vol. 245, Issue 8. – P. 1455–1470. doi: 10.1002/pssb.200743470

34. Kaasbjerg, K. Strong Polarization-Induced Reduction of Addition Energies in Single-Molecule Nanojunctions [Text] / K. Kaasbjerg, K. Flensberg // Nano Letters. – 2008. – Vol. 8, Issue 11. – P. 3809–3814. doi: 10.1021/nl8021708

35. Stokbro, K. First-Principles Modeling of Molecular Single-Electron Transistors [Text] / K. Stokbro // The Journal of Physical Chemistry C. – 2010. – Vol. 114, Issue 48. – P. 20461–20465. doi: 10.1021/jp104811r

36. Liang, W. J. Kondo resonance in a single-molecule transistor [Text] / W. Liang, M. P. Shores, M. Bockrath, J. R. Long, H. Park // Nature. – 2002. – Vol. 417, Issue 6890. – P. 725–729. doi: 10.1038/nature00790

37. Kouwenhoven, L. P. Electron transport in quantum dots [Text] / L. P. Kouwenhoven, C. M. Marcus, P. L. McEuen, S. Tarucha, R. M. Westervelt, N. S. Wingreen // Mesoscopic Electron Transport. – 1997. – P. 105–214. doi: 10.1007/978-94-015-8839-3_4

38. Meirav, U. Single-electron phenomena in semiconductors [Text] / U. Meirav, E. B. Foxman // Semiconductor Science and Technology. – 1996. – Vol. 11, Issue 3. – P. 255–284. doi: 10.1088/0268-1242/11/3/003

39. Fulton, T. A. Observation of Single-Electron Charging Effects in Small Tunnel-Junctions [Text] / T. A. Fulton, G. J. Dolan // Physical Review Letters. – 1987. – Vol. 59, Issue 1. – P. 109–112. doi: 10.1103/physrevlett.59.109

40. Scott-Thomas, J. H. F. Conductance Oscillations Periodic in the Density of a One-Dimensional Electron Gas [Text] / J. H. F. Scott-Thomas, S. B. Field, M. A. Kastner, H. I. Smith, D. A. Antoniadis // Physical Review Letters. – 1989. – Vol. 62, Issue 5. – P. 583–586. doi: 10.1103/physrevlett.62.583

41. Reed, M. Observation of Discrete Electronic States in a Zero-Dimensional Semiconductor Nanostructure [Text] / M. Reed, J. Randall, R. Aggarwal, R. Matyi, T. Moore, A. Wetsel // Physical Review Letters. – 1988. – Vol. 60, Issue 6. – P. 535–537. doi: 10.1103/physrevlett.60.535

42. Klein, D. L. A single-electron transistor made from a cadmium selenide nanocrystal [Text] / P. L. McEuen, D. L. Klein, R. Roth, A. K. L. Lim, A. P. Alivisatos // Nature. – 1997. – Vol. 389, Issue 6652. – P. 699–701. doi: 10.1038/39535

43. Tans, S. J. Individual single-wall carbon nanotubes as quantum wires [Text] / S. J. Tans, M. H. Devoret, H. Dai, A. Thess, R. E. Smalley, L. J. Geerligs, C. Dekker // Nature. – 1997. – Vol. 386, Issue 6624. – P. 474–477. doi: 10.1038/386474a0

44. Bockrath, M. Single-electron transport in ropes of carbon nanotubes [Text] / M. Bockrath // Science. – 1997. – Vol. 275, Issue 5308. – P. 1922–1925. doi: 10.1126/science.275.5308.1922

45. Kruglyak, Yu. Configuration interaction in the second quantization representation: basics with applications up tp full CI [Text] / Yu. Kruglyak // ScienceRise. – 2014. – Vol. 4, Issue 2 (4). – P. 98–115. doi: 10.15587/2313-8416.2014.28948

46. Kruglyak, Yu. A. Configuration interaction in the second quantization representation: basics with applications up tp full CI. Part 3, Chap. 2 [Text] / Yu. A. Kruglyak. – Calculational Methods in Quantum Geometry and Chaos Theory. – Odessa: TES Publishing House, 2015. – P. 43–84.

47. Neugebauer, J. Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on Al(111) [Text] / J. Neugebauer, M. Scheffler // Physical Review B. – 1992. – Vol. 46, Issue 24. – P. 16067–16080. doi: 10.1103/physrevb.46.16067

48. Taylor, J. Ab initio modeling of quantum transport properties of molecular electronic devices [Text] / J. Taylor, H. Guo, J. Wang // Physical Review B. – 2001. – Vol. 63, Issue 24. doi: 10.1103/physrevb.63.245407

49. Soler, J. M. The SIESTA method for ab initio order-N materials simulation [Text] / J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, D. Sánchez-Portal // Journal of Physics: Condensed Matter. – 2002. – Vol. 14, Issue 11. – P. 2745–2779. doi: 10.1088/0953-8984/14/11/302

50. Brandbyge, M. Density-functional method for nonequilibrium electron transport [Text] / M. Brandbyge, J.-L. Mozos, P. Ordejón, J. Taylor, K. Stokbro // Physical Review B. – 2002. – Vol. 65, Issue 16. doi: 10.1103/physrevb.65.165401

51. Handbook of Chemistry and Physics [Text] / D. R. Lide (Ed.). – 90th Edition. – CRC, 2010.

52. Гурвич, Л. В. Энергии разрыва химических связей. Потенциалы ионизации и сродство к электрону [Текст] / Л. В. Гурвич, Г. В. Карачевцев, В. Н. Кондратьев, Ю. А. Лебедев, В. А. Медведев, В. К. Потапов, Ю.С. Ходеев. – М.: Наука, 1974. – 351 с.

53. Rivière, J. C. The Work Function of Gold [Text] / J. C. Rivière // Applied Physics Letters. – 1966. – Vol. 8, Issue 7. – P. 172. doi: 10.1063/1.1754539

54. Lindner, R. Structure and Symmetry of the Benzene Cation [Text] / R. Lindner, H. Sekiya, B. Beyl, K. Müller-Dethlefs // Angewandte Chemie International Edition in English. – 1993. – Vol. 32, Issue 4. – P. 603–606. doi: 10.1002/anie.199306031







Copyright (c) 2016 Юрій Олексійович Кругляк

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN 2313-8416 (Online), ISSN 2313-6286 (Print)