Mechanism of anthracycline cardiotoxicity and analysis of mechanisms of cardioprotective effect of drugs and compounds of various chemical groups




anthracycline antibiotics, doxorubicin, cardiotoxicity


Aim. Research of the main directions of the search of cytoprotectors under anthracycline antibiotics intoxication conditions for the further development and study of new potential cardioprotectors.

Methods. The authors used synthesis and analysis method as the general scientific. Structural and functional, logical and semantic methods were used, as well as system and content analysis method.

Results. Certain mechanisms of cardiotoxicity development, including oxidative stress development, activation of lipid peroxidation, antioxidants reduction, inhibition of nucleic acids and proteins synthesis, biogenesis disorder and mitochondrial fragmentation, etc., simultaneously causing the death of cardiomyocytes by necrosis and apoptosis activation, were studied. Among the offered potential cardioprotectors, known remedies of different chemical groups (Cardioxan, Carvedilol, Metformin, Telmisartan, Spironolactone, Trimetazidine, Phenytoin, Indole-3-Carbinol, etc.), biologically active substances of animal and plant origin were examined, and mechanisms of their action under anthracycline intoxication were offered. Nevertheless, despite numerous studies of potential cardioprotectors, at present time there is no specific clinical guideline for cardiomyopathy prevention after anthracycline antibiotics application, and cardiovascular diseases take first place among population mortality and disability causes in developed countries.

Conclusion. Development and study of substances with optimal pharmacodynamic effects and pharmacokinetic parameters for myocardium structural and functional disorders correction are relevant and promising areas of research


Author Biographies

Ірина Володимирівна Ніженковська, Bogomolets National Medical University 13 Shevchenko boul., Kyiv, Ukraine, 01601

MD, professor, head of the department

Department of pharmaceutical, biological and toxicological chemistry

Віолетта Петрівна Нароха, Bogomolets National Medical University 13 Shevchenko boul., Kyiv, Ukraine, 01601

Teaching assistant

Department of pharmaceutical, biological and toxicological chemistry

Анастасія Віталіївна Бакун, Bogomolets National Medical University 13 Shevchenko boul., Kyiv, Ukraine, 01601

Student, laboratory assistant

Department of pharmaceutical, biological and toxicological chemistry


State Statistics Committee of Ukraine. Available at:

Sawyer, D. B., Peng, X., Chen, B., Pentassuglia, L., Lim, C. C. (2010). Mechanisms of Anthracycline Cardiac Injury: Can We Identify Strategies for Cardioprotection? Progress in Cardiovascular Diseases, 53 (2), 105–113. doi: 10.1016/j.pcad.2010.06.007

Thomas, X., Le, Q., Fiere, D. (2002). Anthracycline-related toxicity requiring cardiac transplantation in long-term disease-free survivors with acute promyelocytic leukemia. Annals of Hematology, 81 (9), 504–507. doi: 10.1007/s00277-002-0534-8

Štěrba, M., Popelová, O., Vávrová, A., Jirkovský, E., Kovaříková, P., Geršl, V., Šimůnek, T. (2013). Oxidative Stress, Redox Signaling, and Metal Chelation in Anthracycline Cardiotoxicity and Pharmacological Cardioprotection. Antioxidants & Redox Signaling, 18 (8), 899–929. doi: 10.1089/ars.2012.4795

Jordan, M. (2012). Mechanism of Action of Antitumor Drugs that Interact with Microtubules and Tubulin. Current Medicinal Chemistry-Anti-Cancer Agents, 2 (1), 1–17. doi: 10.2174/1568011023354290

Weiss, R. B. (1992). The anthracyclines: will we ever find a better doxorubicin? Semin Oncol, 19 (6), 670–686.

Arcamone, F., Cassinelli, G., Fantini, G., Grein, A., Orezzi, P., Pol, C., Spalla, C. (1969). Adriamycin, 14-hydroxydaimomycin, a new antitumor antibiotic fromS. Peucetius var.caesius. Biotechnology and Bioengineering, 11 (6), 1101–1110. doi: 10.1002/bit.260110607

Bonfante, V., Bonadonna, G., Villani, F., Martini, A. (1980). Preliminary Clinical Experience with 4’-Epidoxorubicin in Advanced Human Neoplasia. Cancer Chemo- and Immunopharmacology, 192–199. doi: 10.1007/978-3-642-81488-4_24

Kufe, D., Holland, J., Frei, E. (2003). American Cancer Society: Cancer Medicine. Hamilton, Canada: BC Decker.

McMurray, J. J. V., Adamopoulos, S., Anker, S. D., Auricchio, A., Bohm, M., Dickstein, K. et. al (2012). ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. European Heart Journal, 33 (14), 1787–1847. doi: 10.1093/eurheartj/ehs104

Gewirtz, D. (1999). A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochemical Pharmacology, 57 (7), 727–741. doi: 10.1016/s0006-2952(98)00307-4

Minotti, G. (2004). Anthracyclines: Molecular Advances and Pharmacologic Developments in Antitumor Activity and Cardiotoxicity. Pharmacological Reviews, 56 (2), 185–229. doi: 10.1124/pr.56.2.6

Takemura, G., Fujiwara, H. (2007). Doxorubicin-Induced Cardiomyopathy. Progress in Cardiovascular Diseases, 49 (5), 330–352. doi: 10.1016/j.pcad.2006.10.002

Doroshow, J. H. (1983). Effect of anthracycline antibiotics on oxygen radical formation in rat heart. Cancer Research, 43 (2), 460–472.

Kalyanaraman, B., Perez-Reyes, E., Mason, R. P. (1980). Spin-trapping and direct electron spin resonance investigations of the redox metabolism of quinone anticancer drugs. Biochimica et Biophysica Acta (BBA) – General Subjects, 630 (1), 119–130. doi: 10.1016/0304-4165(80)90142-7

Singal, P., Deally, C., Weinberg, L. (1987). Subcellular effects of adriamycin in the heart: A concise review. Journal of Molecular and Cellular Cardiology, 19 (8), 817–828. doi: 10.1016/s0022-2828(87)80392-9

Doroshow, J. H., Locker, G. Y., Baldinger, J., Myers, C. E. (1979). The effect of doxorubicin on hepatic and cardiac glutathione. Res Commun Chem Pathol Pharmacol., 26 (2), 285–295.

Odom, A. L., Hatwig, C. A., Stanley, J. S., Benson, A. M. (1992). Biochemical determinants of adriamycin® toxicity in mouse liver, heart and intestine. Biochemical Pharmacology, 43 (4), 831–836. doi: 10.1016/0006-2952(92)90250-m

Olson, R. D., MacDonald, J. S, van Boxtel, C. J., Boerth, R. C., Harbison, R. D., Slonim, A. E., Freeman, R. W., Oates, J. A. (1980). Regulatory role of glutathione and soluble sulfhydryl groups in the toxicity of Adriamycin. J Exp Ther, 215 (2), 450–454.

Singal, P. K., Segstro, R. J., Singh, R. P., Kutryk, M. J. (1985). Changes in lysosomal morphology and enzyme activities during the development of Adriamycin-induced cardiomyopathy. Can J Cardiol, 1 (2), 139–147.

Arena, E., D’Alessandro, N., Dusonchet, L., Geraci, M., Rausa, L., Sanguedolce, R. (1979). Repair kinetics of DNA, RNA and proteins in the tissues of mice treated with doxorubicin. Arzneimittelforschung, 29 (6), 901–902.

Bristow, M. R., Sageman, W. S., Scott, R. H., Billingham, M. E., Bowden, R. E., Kernoff, R. S. et. al (1980). Acute and Chronic Cardiovascular Effects of Doxorubicin in the Dog. Journal of Cardiovascular Pharmacology, 2 (5), 487–516. doi: 10.1097/00005344-198009000-00002

Tong, J., Ganguly, P. K., Singal, P. K. (1991). Myocardial adrenergic changes at two stages of heart failure due to adriamycin treatment in rats. Am J Physiol, 260, 909–916.

Wallace, K. B. (2007). Adriamycin-induced interference with cardiac mitochondrial calcium homeostasis. Cardiovascular Toxicology, 7 (2), 101–107. doi: 10.1007/s12012-007-0008-2

Nithipongvanitch, R., Ittarat, W., Velez, J. M., Zhao, R., St. Clair, D. K., Oberley, T. D. (2007). Evidence for p53 as Guardian of the Cardiomyocyte Mitochondrial Genome Following Acute Adriamycin Treatment. Journal of Histochemistry and Cytochemistry, 55 (6), 629–639. doi: 10.1369/jhc.6a7146.2007

Tokarska-Schlattner, M. (2002). Multiple Interference of Anthracyclines with Mitochondrial Creatine Kinases: Preferential Damage of the Cardiac Isoenzyme and Its Implications for Drug Cardiotoxicity. Molecular Pharmacology, 61 (3), 516–523. doi: 10.1124/mol.61.3.516

Suliman, H. B. The CO/HO system reverses inhibition of mitochondrial biogenesis and prevents murine doxorubicin cardiomyopathy / H. B. Suliman, M. S. Carraway, A. S. Ali, C. M. Reynolds, K. E. Welty-Wolf, C. A. Piantadosi // Journal of Clinical Investigation. – 2007. – Vol. 117, Issue 12. – P. 3730–3741. doi: 10.1172/jci32967

Parra, V., Eisner, V., Chiong, M., Criollo, A., Moraga, F., Garcia, A. et. al (2007). Changes in mitochondrial dynamics during ceramide-induced cardiomyocyte early apoptosis. Cardiovascular Research, 77 (2), 387–397. doi: 10.1093/cvr/cvm029

Gubskiy, Ju. I. (2015). Smert` kletki: svobodnie radicali, nekroz, apoptoz: monografija. Vinniza: Nova Kniga, 360.

Feuerstein, G. Z., Ruffolo, R. R. (1995). Carvedilol, a novel multiple action antihypertensive agent with antioxidant activity and the potential for myocardial and vascular protection. European Heart Journal, 16, 38–42. doi: 10.1093/eurheartj/16.suppl_f.38

Spallarossa, P., Garibaldi, S., Altieri, P., Fabbi, P., Manca, V., Nasti, S. et. al (2004). Carvedilol prevents doxorubicin-induced free radical release and apoptosis in cardiomyocytes in vitro. Journal of Molecular and Cellular Cardiology, 37 (4), 837–846. doi: 10.1016/j.yjmcc.2004.05.024

Faure, P., Rossini, E., Wiernsperger, N., Richard, M. J., Favier, A., Halimi, S. (1999). An insulin sensitizer improves the free radical defense system potential and insulin sensitivity in high fructose-fed rats. Diabetes, 48 (2), 353–357. doi: 10.2337/diabetes.48.2.353

Kanigür-Sultuybek, G., Güven, M., Onaran, İ., Tezcan, V., Cenani, A., Hatemi, H. (1995). The Effect of Metformin on Insulin Receptors and Lipid Peroxidation in Alloxan and Streptozotocin Induced Diabetes. Journal of Basic and Clinical Physiology and Pharmacology, 6 (3-4). doi: 10.1515/jbcpp.1995.6.3-4.271

Hadi, N., Yousif, N., Al-amran Fadhil G, Huntei, N. K., Mohammad, B. I., Ali, S. J. (2012). Vitamin E and telmisartan attenuates doxorubicin induced cardiac injury in rat through down regulation of inflammatory response. BMC Cardiovascular Disorders, 12 (1), 63. doi: 10.1186/1471-2261-12-63

Akpek, M., Ozdogru, I., Sahin, O., Inanc, M., Dogan, A., Yazici, C. et. al (2014). Protective effects of spironolactone against anthracycline-induced cardiomyopathy. European Journal of Heart Failure, 17 (1), 81–89. doi: 10.1002/ejhf.196

Salouege, I., Ali, R., Saïd, D., Elkadri, N., Kourda, N., Lakhal, M., Klouz, A. (2014). Means of evaluation and protection from doxorubicin-induced cardiotoxicity and hepatotoxicity in rats. Journal of Cancer Research and Therapeutics, 10 (2), 274. doi: 10.4103/0973-1482.136557

Chang, S.-A., Lim, B.-K., Lee, Y. J., Hong, M.-K., Choi, J.-O., Jeon, E.-S. (2015). A Novel Angiotensin Type I Receptor Antagonist, Fimasartan, Prevents Doxorubicin-induced Cardiotoxicity in Rats. Journal of Korean Medical Science, 30 (5), 559. doi: 10.3346/jkms.2015.30.5.559

Razmaraii, N., Babaei, H., Mohajjel Nayebi, A., Asadnasab, G., Ashrafi Helan, J., Azarmi, Y. (2016). Cardioprotective Effect of Phenytoin on Doxorubicin-induced Cardiac Toxicity in a Rat Model. Journal of Cardiovascular Pharmacology, 67 (3), 237–245. doi: 10.1097/fjc.0000000000000339

Adwas, A. A., Elkhoely, A. A., Kabel, A. M., Abdel-Rahman, M. N., Eissa, A. A. (2016). Anti-cancer and cardioprotective effects of indol-3-carbinol in doxorubicin-treated mice. Journal of Infection and Chemotherapy, 22 (1), 36–43. doi: 10.1016/j.jiac.2015.10.001

Chekman, I. S., Rakrts`ka, O. O., Gorchakova, N. O. (2015). Vpliv jaktonu ta meksikoru na prooksidantno-antioksidantnij gomeostaz i proteinsynthes u miokarde schuriv v umovah doxorubicinovoi cardiomiopatii. Zaporiz`kuj meduchnij zhurnal, 2, 25–27.

Altieri, P., Barisione, C., Lazzarini, E., Garuti, A., Bezante, G. P., Canepa, M. et. al (2016). Testosterone Antagonizes Doxorubicin‐Induced Senescence of Cardiomyocytes. Journal of the American Heart Association, 5 (1), e002383. doi: 10.1161/jaha.115.002383

Bersell, K., Arab, S., Haring, B., Kühn, B. (2009). Neuregulin1/ErbB4 Signaling Induces Cardiomyocyte Proliferation and Repair of Heart Injury. Cell, 138 (2), 257–270. doi: 10.1016/j.cell.2009.04.060

Lemmens, K., Doggen, K., De Keulenaer, G. W. (2007). Role of Neuregulin-1/ErbB Signaling in Cardiovascular Physiology and Disease: Implications for Therapy of Heart Failure. Circulation, 116 (8), 954–960. doi: 10.1161/circulationaha.107.690487

Nizhenkovska, I. (2015). The Influence of a New Uracil Derivative Carbicyl on Myocardium Bioenergetic Processes. American Journal of Clinical and Experimental Medicine, 3 (4), 162. doi: 10.11648/j.ajcem.20150304.16

Nizhenkovska, I. (2013). The influence of sufan on myocardial energetic metabolism in the case of adriamycin-induced heart failure. Cur Topic Pharm., 17 (1), 103–108.

Granados-Principal, S., Quiles, J. L., Ramirez-Tortosa, C. L., Sanchez-Rovira, P., Ramirez-Tortosa, M. (2010). New advances in molecular mechanisms and the prevention of adriamycin toxicity by antioxidant nutrients. Food and Chemical Toxicology, 48 (6), 1425–1438. doi: 10.1016/j.fct.2010.04.007

Iarussi, D., Auricchio, U., Agretto, A., Murano, A., Giuliano, M., Casale, F. et. al (1994). Protective effect of Coenzyme Q10 on anthracyclines cardiotoxicity: Control study in children with acute lymphoblastic leukemia and non-Hodgkin lymphoma. Molecular Aspects of Medicine, 15, s207–s212. doi: 10.1016/0098-2997(94)90030-2

Van Dalen, E., Michiels, E. M., Caron, H. N., Kremer, L. C. (2006). Different anthracycline derivates for reducing cardiotoxicity in cancer patients. Cochrane Database Syst Rev. doi: 10.1002/14651858.cd005006.pub2

Wouters, K. A., Kremer, L. C. M., Miller, T. L., Herman, E. H., Lipshultz, S. E. (2005). Protecting against anthracycline-induced myocardial damage: a review of the most promising strategies. British Journal of Haematology, 131 (5), 561–578. doi: 10.1111/j.1365-2141.2005.05759.x

Ferrari, R., Ceconi, C., Curello, S., Cargnoni, A., Alfieri, O., Pardini, A. et. al (1991). Oxygen free radicals and myocardial damage: Protective role of thiol-containing agents. The American Journal of Medicine, 91 (3), S95–S105. doi: 10.1016/0002-9343(91)90291-5

Das, S., Falchi, M., Bertelli, A., Maulik, N., Das, D. K. (2006). Attenuation of ischemia/reperfusion injury in rats by the anti-inflammatory action of resveratrol. Arzneimittel-Forschung/Drug Research, 56 (10), 700–706.

Luther, D. J., Ohanyan, V., Shamhart, P. E., Hodnichak, C. M., Sisakian, H., Booth, T. D. et. al (2009). Chemopreventive doses of resveratrol do not produce cardiotoxicity in a rodent model of hepatocellular carcinoma. Investigational New Drugs, 29 (2), 380–391. doi: 10.1007/s10637-009-9332-7

Subburaman, S., Ganesan, K., Ramachandran, M. (2014). Protective Role of Naringenin Against Doxorubicin-Induced Cardiotoxicity in a Rat Model: Histopathology and mRNA Expression Profile Studies. Journal of Environmental Pathology, Toxicology and Oncology, 33 (4), 363–376. doi: 10.1615/jenvironpatholtoxicoloncol.2014010625

Chiu, P. Y., Leung, H. Y., Poon, M. K. T., Ko, K. M. (2006). Chronic schisandrin B treatment improves mitochondrial antioxidant status and tissue heat shock protein production in various tissues of young adult and middle-aged rats. Biogerontology, 7 (4), 199–210. doi: 10.1007/s10522-006-9017-y

Mak, D. F., Ip, S.-P., Li, P.-C., Poon, M. T., Ko, K.-M. (1996). Effects of Schisandrin B and alpha-tocopherol on lipid peroxidation, in vitro and in vivo. Molecular and Cellular Biochemistry, 165 (2). doi: 10.1007/bf00229479

Mandziuk, S., Gieroba, R., Korga, A., Matysiak, W., Jodlowska-Jedrych, B., Burdan, F. et. al (2015). The differential effects of green tea on dose-dependent doxorubicin toxicity. Food & Nutrition Research, 59 (0). doi: 10.3402/fnr.v59.29754

Barteková, M., Šimončíková, P., Fogarassyová, M., Ivanová, M., Okruhlicová, Ľ., Tribulová, N. et. al (2015). Quercetin Improves Postischemic Recovery of Heart Function in Doxorubicin-Treated Rats and Prevents Doxorubicin-Induced Matrix Metalloproteinase-2 Activation and Apoptosis Induction. International Journal of Molecular Sciences, 16 (4), 8168–8185. doi: 10.3390/ijms16048168

Chekman, I. S., Gorchakova, N. O., Nagorna, O. O., Nebesna, T. Ju. (2008). Nikotinamid. Kiev: Poligraphplus, 112.

Bhamra, G. S., Hausenloy, D. J., Davidson, S. M., Carr, R. D., Paiva, M., Wynne, A. M. et. al (2007). Metformin protects the ischemic heart by the Akt-mediated inhibition of mitochondrial permeability transition pore opening. Basic Research in Cardiology, 103 (3), 274–284. doi: 10.1007/s00395-007-0691-y

Gundewar, S., Calvert, J. W., Jha, S., Toedt-Pingel, I., Yong Ji, S., Nunez, D. et. al (2009). Activation of AMP-Activated Protein Kinase by Metformin Improves Left Ventricular Function and Survival in Heart Failure. Circulation Research, 104 (3), 403–411. doi: 10.1161/circresaha.108.190918

Ashour, A. E., Sayed-Ahmed, M. M., Abd-Allah, A. R., Korashy, H. M., Maayah, Z. H., Alkhalidi, H. et. al (2012). Metformin Rescues the Myocardium from Doxorubicin-Induced Energy Starvation and Mitochondrial Damage in Rats. Oxidative Medicine and Cellular Longevity, 2012, 1–13. doi: 10.1155/2012/434195

Mohamed, H. E., El-Swefy, S. E., Hagar, H. H. (2000). The protective effect of glutathione administration on adriamycin-induced acute cardiac toxicity in rats. Pharmacological Research, 42 (2), 115–121. doi: 10.1006/phrs.1999.0630

Patel, K. R., Scott, E., Brown, V. A., Gescher, A. J., Steward, W. P., Brown, K. (2011). Clinical trials of resveratrol. Annals of the New York Academy of Sciences, 1215 (1), 161–169. doi: 10.1111/j.1749-6632.2010.05853.x

Smoliga, J. M., Baur, J. A., Hausenblas, H. A. (2011). Resveratrol and health –A comprehensive review of human clinical trials. Molecular Nutrition & Food Research, 55 (8), 1129–1141. doi: 10.1002/mnfr.201100143

Aggarwal, B. B., Bhardwaj, A., Aggarwal, R. S., Seeram, N. P., Shishodia, S., Takada, Y. (2004). Role of resveratrol in prevention and therapy of cancer: preclinical and clinical studies. Anticancer Research, 24 (5), 2783–2840.

Al-Abd, A. M., Mahmoud, A. M., El-Sherbiny, G. A., El-Moselhy, M. A., Nofal, S. M., El-Latif, H. A. et. al (2011). Resveratrol enhances the cytotoxic profile of docetaxel and doxorubicin in solid tumour cell lines in vitro. Cell Proliferation, 44 (6), 591–601. doi: 10.1111/j.1365-2184.2011.00783.x

Rezk, Y. A., Balulad, S. S., Keller, R. S., Bennett, J. A. (2006). Use of Resveratrol to improve the effectiveness of cisplatin and doxorubicin: Study in human gynecologic cancer cell lines and in rodent heart. American Journal of Obstetrics and Gynecology, 194 (5), e23–e26. doi: 10.1016/j.ajog.2005.11.030

Sato, M., Maulik, N., Das, D. K. (2002). Cardioprotection with Alcohol. Annals of the New York Academy of Sciences, 957 (1), 122–135. doi: 10.1111/j.1749-6632.2002.tb02911.x

Hasko, G., Pacher, P. (2010). Endothelial Nrf2 activation: a new target for resveratrol? AJP: Heart and Circulatory Physiology, 299 (1), H10–H12. doi: 10.1152/ajpheart.00436.2010

Kumar, A., Singh, C. K., LaVoie, H. A., DiPette, D. J., Singh, U. S. (2011). Resveratrol Restores Nrf2 Level and Prevents Ethanol-Induced Toxic Effects in the Cerebellum of a Rodent Model of Fetal Alcohol Spectrum Disorders. Molecular Pharmacology, 80 (3), 446–457. doi: 10.1124/mol.111.071126

Ungvari, Z., Bagi, Z., Feher, A., Recchia, F. A., Sonntag, W. E., Pearson, K. et. al (2010). Resveratrol confers endothelial protection via activation of the antioxidant transcription factor Nrf2. AJP: Heart and Circulatory Physiology, 299 (1), H18–H24. doi: 10.1152/ajpheart.00260.2010

Roy, S., Sannigrahi, S., Majumdar, S., Ghosh, B., Sarkar, B. (2011). Resveratrol Regulates Antioxidant Status, Inhibits Cytokine Expression and Restricts Apoptosis in Carbon Tetrachloride Induced Rat Hepatic Injury. Oxidative Medicine and Cellular Longevity, 2011, 1–12. doi: 10.1155/2011/703676

Cao, Z., Li, Y. (2004). Potent induction of cellular antioxidants and phase 2 enzymes by resveratrol in cardiomyocytes: protection against oxidative and electrophilic injury. European Journal of Pharmacology, 489 (1-2), 39–48. doi: 10.1016/j.ejphar.2004.02.031

Brookins Danz, E. D., Skramsted, J., Henry, N., Bennett, J. A., Keller, R. S. (2009). Resveratrol prevents doxorubicin cardiotoxicity through mitochondrial stabilization and the Sirt1 pathway. Free Radical Biology and Medicine, 46 (12), 1589–1597. doi: 10.1016/j.freeradbiomed.2009.03.011

Dudka, J., Gieroba, R., Korga, A., Burdan, F., Matysiak, W., Jodlowska-Jedrych, B. et. al (2012). Different Effects of Resveratrol on Dose-Related Doxorubicin-Induced Heart and Liver Toxicity. Evidence-Based Complementary and Alternative Medicine, 2012, 1–10. doi: 10.1155/2012/606183

Nishida, H., Tatewaki, N., Nakajima, Y., Magara, T., Ko, K. M., Hamamori, Y., Konishi, T. (2009). Inhibition of ATR protein kinase activity by schisandrin B in DNA damage response. Nucleic Acids Research, 37 (17), 5678–5689. doi: 10.1093/nar/gkp593

Thandavarayan, R. A., Giridharan, V. V., Arumugam, S., Suzuki, K., Ko, K. M., Krishnamurthy, P. et. al (2015). Schisandrin B Prevents Doxorubicin Induced Cardiac Dysfunction by Modulation of DNA Damage, Oxidative Stress and Inflammation through Inhibition of MAPK/p53 Signaling. PLoS ONE, 10 (3), e0119214. doi: 10.1371/journal.pone.0119214

Bian, Y., Sun, M., Silver, M., Ho, K. K. L., Marchionni, M. A., Caggiano, A. O. et. al (2009). Neuregulin-1 attenuated doxorubicin-induced decrease in cardiac troponins. AJP: Heart and Circulatory Physiology, 297 (6), H1974–H1983. doi: 10.1152/ajpheart.01010.2008

Wadugu, B., Kuhn, B. (2012). The role of neuregulin/ErbB2/ErbB4 signaling in the heart with special focus on effects on cardiomyocyte proliferation. AJP: Heart and Circulatory Physiology, 302 (11), H2139–H2147. doi: 10.1152/ajpheart.00063.2012

Pentassuglia, L., Sawyer, D. B. (2009). The role of Neuregulin-1β/ErbB signaling in the heart. Experimental Cell Research, 315 (4), 627–637. doi: 10.1016/j.yexcr.2008.08.015

Gu, X., Liu, X., Xu, D., Li, X., Yan, M., Qi, Y. et. al (2010). Cardiac functional improvement in rats with myocardial infarction by up-regulating cardiac myosin light chain kinase with neuregulin. Cardiovascular Research, 88 (2), 334–343. doi: 10.1093/cvr/cvq223

Chan, J. Y., Takeda, M., Briggs, L. E., Graham, M. L., Lu, J. T., Horikoshi, N. et. al (2008). Identification of Cardiac-Specific Myosin Light Chain Kinase. Circulation Research, 102 (5), 571–580. doi: 10.1161/circresaha.107.161687

Ding, P., Huang, J., Battiprolu, P. K., Hill, J. A., Kamm, K. E., Stull, J. T. (2010). Cardiac Myosin Light Chain Kinase Is Necessary for Myosin Regulatory Light Chain Phosphorylation and Cardiac Performance in Vivo. Journal of Biological Chemistry, 285 (52), 40819–40829. doi: 10.1074/jbc.m110.160499

Seguchi, O., Takashima, S., Yamazaki, S., Asakura, M., Asano, Y., Shintani, Y. et. al (2007). A cardiac myosin light chain kinase regulates sarcomere assembly in the vertebrate heart. Journal of Clinical Investigation, 117 (10), 2812–2824. doi: 10.1172/jci30804

Kamm, K. E., Stull, J. T. (2011). Signaling to Myosin Regulatory Light Chain in Sarcomeres. Journal of Biological Chemistry, 286 (12), 9941–9947. doi: 10.1074/jbc.r110.198697

Olsson, M. C. (2004). Basal myosin light chain phosphorylation is a determinant of Ca2+ sensitivity of force and activation dependence of the kinetics of myocardial force development. AJP: Heart and Circulatory Physiology, 287 (6), H2712–H2718. doi: 10.1152/ajpheart.01067.2003

Stelzer, J. E., Patel, J. R., Moss, R. L. (2006). Acceleration of Stretch Activation in Murine Myocardium due to Phosphorylation of Myosin Regulatory Light Chain. The Journal of General Physiology, 128 (3), 261–272. doi: 10.1085/jgp.200609547

Sheikh, F., Ouyang, K., Campbell, S. G., Lyon, R. C., Chuang, J., Fitzsimons, D. et. al (2012). Mouse and computational models link Mlc2v dephosphorylation to altered myosin kinetics in early cardiac disease. Journal of Clinical Investigation, 122 (4), 1209–1221. doi: 10.1172/jci61134

Zhu, S.-G., Kukreja, R. C., Das, A., Chen, Q., Lesnefsky, E. J., Xi, L. (2011). Dietary Nitrate Supplementation Protects Against Doxorubicin-Induced Cardiomyopathy by Improving Mitochondrial Function. Journal of the American College of Cardiology, 57 (21), 2181–2189. doi: 10.1016/j.jacc.2011.01.024

Xi, L., Zhu, S.-G., Das, A., Chen, Q., Durrant, D., Hobbs, D. C. et. al (2012). Dietary inorganic nitrate alleviates doxorubicin cardiotoxicity: Mechanisms and implications. Nitric Oxide, 26 (4), 274–284. doi: 10.1016/j.niox.2012.03.006

Lipshultz, S. E. (1996). Dexrazoxane for protection against cardiotoxic effects of anthracyclines in children. J Clin Oncol, 14 (2), 328–331.

Lipshultz, S. E., Rifai, N., Dalton, V. M., Levy, D. E., Silverman, L. B., Lipsitz, S. R. et. al (2004). The Effect of Dexrazoxane on Myocardial Injury in Doxorubicin-Treated Children with Acute Lymphoblastic Leukemia. New England Journal of Medicine, 351 (2), 145–153. doi: 10.1056/nejmoa035153

Lipshultz, S. E., Scully, R. E., Lipsitz, S. R., Sallan, S. E., Silverman, L. B., Miller, T. L. et. al (2010). Assessment of dexrazoxane as a cardioprotectant in doxorubicin-treated children with high-risk acute lymphoblastic leukaemia: long-term follow-up of a prospective, randomised, multicentre trial. The Lancet Oncology, 11 (10), 950–961. doi: 10.1016/s1470-2045(10)70204-7

Lyu, Y. L., Kerrigan, J. E., Lin, C.-P., Azarova, A. M., Tsai, Y.-C., Ban, Y., Liu, L. F. (2007). Topoisomerase II Mediated DNA Double-Strand Breaks: Implications in Doxorubicin Cardiotoxicity and Prevention by Dexrazoxane. Cancer Research, 67 (18), 8839–8846. doi: 10.1158/0008-5472.can-07-1649

US Food and Drug Administration. Available at:





Pharmaceutical Sciences