Graphene in Landauer-Datta-Lundstrom transport model

Authors

  • Юрій Олексійович Кругляк Odessa State Environmental University, Ukraine

DOI:

https://doi.org/10.15587/2313-8416.2015.36443

Keywords:

nanophysics, nanoelectronics, graphene, mode numbers, maximum conductivity, effective mass, phonon states, thermal conductivity, thermoelectric coefficients

Abstract

There are discussed the following properties of graphene such as the density of electronic states and current carriers, the number of modes and maximum conductivity, scattering and mobility in graphene, the cyclotron frequency and the effective mass, phonon density of states, the relative contribution of electrons and phonons in the thermal conductivity of graphene. For reference purposes a summary of thermoelectric coefficients for graphene in ballistic and diffusive conduction regimes with the power law of scattering is given

Author Biography

Юрій Олексійович Кругляк, Odessa State Environmental University

Doctor of Chemical Sciences, Professor

Department of Information Technologies

References

Kruglyak, Yu. (2014). Landauer-Datta-Lundstrom Generalized Transport Model for Nanoelectronics, Journal of Nanoscience, 15. doi: 10.1155/2014/725420

Kruglyak, Yu. A. (2013). Landauer-Datta-Lundstrom Generalized Electron Transport Model for Nanoelectronics. Nanosystems, Nanomaterials, Nanotechnologies, 11 (3), 519–549. Erratum: ibid, (2014). 12 (2), 415.

Strikha, М. V. (2010). Physics of Graphene: Status and Perspectives. Sensor Electronics Microsys. Tech., 7 (3), 5–13.

Geim, A. K. (2009). Graphene: Status and Prospects. Science, 324 (5934), 1530–1534. doi: 10.1126/science.1158877

Novoselov, K. S. (2009). Beyond the wonder material. Physics World, 22 (8), 27–30.

Lozovik, Yu. E., Merkulova, S. P., Sokolik, A. A. (2008). Collective electron phenomena in graphene. Physics Uspekhi, 51, 727–744. doi: 10.3367/ufnr.0178.200807h.0757

Morozov, S. V., Novoselov, K. S., Geim, A. K. (2008). Electronic transport in graphene. Physics Uspekhi, 51, 744–748 doi: 10.3367/ufnr.0178.200807i.0776

Tsuneya, A. (2008). Physics of Graphene. Zero-Mode Anomalies and Roles of Symmetry. Progress of Theoretical Physics Supplement, 176, 203–226. doi: 10.1143/ptps.176.203

Geim, A. K., Novoselov, K. S. (2007). The Rise of Graphene. Nature Materials, 6, 183–191. doi: 10.1038/nmat1849

McClure, J. W. (1956). Diamagnetism of Graphite. Physical Review, 104 (3), 666–671. doi: 10.1103/physrev.104.666

Slonczewski, J. C., Weiss, P. R. (1958). Band Structure of Graphite. Physical Review, 109 (2), 272–279. doi: 10.1103/physrev.109.272

Ando, T. (2005). Theory of electronic states and transport in carbon nanotubes. Journal of the Physical Society of Japan, 74 (13), 777–817. doi: 10.1143/jpsj.74.777

Shon, N. H., Ando, T. (1998). Quantum transport in two-dimensional graphite system. Journal of the Physical Society of Japan, 67 (7), 2421–2429. doi: 10.1143/jpsj.67.2421

Peres, N. M. R., Lopes dos Santos, J. M. B., Stauber, T. (2007). Phenomenological study of the electronic transport coefficients of graphene. Physical Review B, 76 (7). doi: 10.1103/physrevb.76.073412

Zhu, W., Perebeinos, V., Freitag, M., Avouris, P. (2009). Carrier scattering, mobilities, and electrostatic potential in monolayer, bilayer, and trilayer graphene, Physical Review B, 80 (23), 235–402. doi: /10.1103/physrevb.80.235402

Perebeinos, V., Avouris, P. (2010). Inelastic scattering and current saturation graphene. Physical Review B, 81 (19). doi: 10.1103/physrevb.81.195442

Das Sarma, S., Adam, S., Hwang, E. H., Rossi, E. (2011). Electronic transport in two-dimensional graphene. Reviews of Modern Physics, 83 (2), 407–470. doi: 10.1103/revmodphys.83.407

Novoselov, R. S., Geim, A. K., Morozov S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., Firsov, A. A. (2004). Electric Field Effect in Atomically Thin Carbon Films. Science, 306 (5659), 666–669. doi: 10.1126/science.1102896

Morozov, S. V., Novoselov, K. S., Schedin, F., Jiang, D., Firsov, A. A., Geim, A. K. (2005). Two-dimensional electron and hole gases at the surface of graphite. Physical Review B, 72 (20). doi: 10.1103/physrevb.72.201401

Novoselov, R. S., Geim, A. K., Morozov, S. V., Jiang, D., Katsnelson, M. I., Grigorieva, I. V., Dubonos, S. V., Firsov, A. A. (2005). Two-Dimensional Gas of Massless Dirac Fermions in Graphene. Nature, 438 (7065), 197–200. doi: 10.1038/nature04233

Zhang, Y., Tan, Y.-W., Stormer, H. L., Kim, P. (2005). Experimental observation of the quantum Hall effect and Berry's phase in grapheme. Nature, 438 (7065), 201–204. doi: 10.1038/nature04235

Laughlin, R. B. Condensed Matter Theory (II): Graphene Band Structure. Graphene Density of States. Available at: http://large.stanford.edu/courses/

Supriyo Datta. Graphene Bandstructures (2008). Purdue University. Available at: www.nanohub.org/resources/5710

Supriyo Datta. Graphene Density of States I (2008). Purdue University. Available at: www.nanohub.org/resources/5721

Supriyo Datta. Graphene Density of States II (2008). Purdue University. Available at: www.nanohub.org/resources/5722

Kruglyak, Yu. A., Kruglyak, N. E. (2012). Calculation of graphene band structure. Methodological and theoretical basis. Visnyk Odessa State Ecolog. Univ., 13, 207–218.

Lundstrom, M. (2009). Sums in k-space/Integrals in Energy Space. Purdue University. Available at: www.nanohub.org/resources/7296

Berdebes, D., Low, T., Lundstrom, M. (2009). Lecture Notes on Low Bias Transport in Graphene: An Introduction. Purdue University. Available at: www.nanohub.org/resources/7435

Lundstrom, M., Jeong, C. (2013). Near-Equilibrium Transport: Fundamentals and Applications. Hackensack, New Jersey: World Scientific Publishing Company. Available at: www.nanohub.org/resources/11763

Kruglyak, Yu. A., Strikha, М. V. (2014). Lessons of nanoelectronics: Hall effect and measurement of electrochemical potentials within «bottom–up» approach, Sensor Electronics Microsys. Tech., 11 (1), 5–27.

Kruglyak, Yu. A. (2013). From Ballistic Conductivity to Diffusional in the Landauer-Datta-Lunstrom Transport Model. Nanosystems, Nanomaterials, Nanotechnologies, 11 (4), 655–677.

Kruglyak, Yu. A., Kruglyak, N. E. (2013). Lessons of nanoelectronics. 3. Electronic conductivity and conductivity modes by «bottom – up» approach, Physics in Higher Education, 19 (3), 99–110.

Kruglyak, Yu. A., Kruglyak, N. E. (2013). Lessons of nanoelectronics. 2. Elastic resistor model and new Ohm’s law by «bottom – up» approach, Physics in Higher Education, 19 (2), 161–173.

Kruglyak, Yu. A. (2014).Heat transfer by phonons in Landauer-Datta-Lundstrom approach, Proceedings of the International Conference. Nanomaterials: Applications and Properties”, 3 (2), 5.

Singh, D., Murthy, J. Y., Fisher, T. S. (2011). Spectral phonon conduction and dominant scattering pathways in graphene. Journal of Applied Physics, 110 (9). doi: 10.1063/1.3656451

Fisher, T. S. (2013). Thermal Energy at the Nanoscale. Hackensack, New Jersey: World Scientific Publishing Company. Available at: www.nanohub.org/courses/2

Das Sarma, S., Adam, S., Hwang, E. H., Rossi, E. (2011). Electronic transport in two-dimensional graphene. Reviews of Modern Physics, 83 (2), 407–470. doi: 10.1103/revmodphys.83.407

Kim, R. S. (2011). Physics and Simulation of Nanoscale Electronic and Thermoelectric Devices. West Lafayette: Purdue University, 220.

Supriyo Datta, Lessons from Nanoelectronics: A New Perspective on Transport (2012). Hackensack, New Jersey: World Scientific Publishing Company. Avaialble at: www.nanohub.org/courses/FoN1

Kruglyak, Yu. A., Strikha, М. V. (2013). Lessons of nanoelectronics: Non-equilibrium Green’s functions method in matrix representation. II. Model transport problems, Sensor Electronics Microsys. Tech., 10 (4), 5–22.

Published

2015-02-25

Issue

Section

Physics and mathematics