Nanoelectronics «bottom – up»: coulomb blocade and single-electron nanotransistor on benzene molecule

Authors

  • Юрій Олексійович Кругляк Odessa State Environmental University 15 Lvovskaya str., Odessa, Ukraine, 65016, Ukraine

DOI:

https://doi.org/10.15587/2313-8416.2016.58557

Keywords:

nanophysics, nanoelectronics, molecular electronics, singlelectronics, Coulomb blocade, single-electron transistor

Abstract

Coulomb blocade in singlelectronics is discussed under the «bottom – up» approach of modern nanoelectronics. The first-principle methods for calculating the charging molecular energies and charge stability diagram of the benzene molecule single-electron transistor under the Coulomb blockade regime were applied using the density-functional theory for modeling molecular properties and continuum model to describe single-electron transistor environment as well as a self-consistent approach to treat the interaction between the molecule and the environment

Author Biography

Юрій Олексійович Кругляк, Odessa State Environmental University 15 Lvovskaya str., Odessa, Ukraine, 65016

Doctor of Chemical Sciences, Professor

Department of Information Technologies

 

References

Kruglyak, Yu. O., Strikha, M. V. (2013). Lessons of nanoelectronics: non-equillibrium green’s functions method in matrix representation. I. Theory. Sensor Electronics and Мicrosystem Technologies, 10 (3), 22–35.

Kruglyak, Yu. O., Strikha, M. V. (2014). Lessons of nanoelectronics: quantum interference and dephasing in non-equillibrium Green’s functions method. Sensor Electronics and Мicrosystem Technologies, 11 (3), 5–18.

Kruglyak, Yu. O. (2015). Nanoelectronics «bottom – up»: Non-equillibrium Green’s functions method, model transport problems and quantum interference. ScienceRise, 9/2 (14), 41–72. doi: 10.15587/2313-8416.2015.48827

Kruglyak, Yu. O., Strikha, M. V. (2014). Lessons of nanoelectronics: Hall effect and measurement of electrochemical potentials within «bottom – up» approach. Sensor Electronics and Мicrosystem Technologies, 11 (1), 5–27.

Kruglyak, Yu. O., Strikha, M. V. (2014). Lessons of nanoelectronics: The role of electrostatics and contacts in «bottom–up» approach. Sensor Electronics and Мicrosystem Technologies, 11 (4), 27–42.

Kruglyak, Yu. O. (2015). Landauer – Datta – Lundstrom conductivity model in micro- and nanoelectronics and Boltzmann transport equation. ScienceRise, 3/2 (8), 108–116. doi: 10.15587/2313-8416.2015.38848

Danielewicz, P. (1984). Quantum theory of nonequilibrium processes, I. Annals of Physics, 152 (2), 239–304. doi: 10.1016/0003-4916(84)90092-7

Mahan, G. D. (1987). Quantum transport equation for electric and magnetic fields. Physics Reports, 145 (5), 251–318. doi: 10.1016/0370-1573(87)90004-4

Datta, S. (2005). Quantum Transport: Atom to Transistor. Cambridge: Cambridge University Press, 404. doi: 10.1017/cbo9781139164313

Kruglyak, Yu. O. (2015). Nanoelectronics «bottom – up»: the role of electrostatics and contacts. ScienceRise, 12/2 (17), 51–67. doi: 10.15587/2313-8416.2015.56272

Martin, P. C., Schwinger, J. (1959). Theory of Many-Particle Systems. I. Physical Review, 115 (6), 1342–1373. doi: 10.1103/physrev.115.1342

Kadanoff, L. P., Baym, G. (1962). Quantum Statistical Mechanics. New York: W. A. Benjamin, 203.

Keldysh, L. V. (1965). Diagram Technique for Non-Equilibrium Processes. Sov. Phys. JETP, 20, 1018.

Kryachko, E. S., Ludeña, E. V. (2014). Density functional theory: Foundations reviewed. Physics Reports, 544 (2), 123–239. doi: 10.1016/j.physrep.2014.06.002

Averin, D. V., Likharev, K. K. (1991). Single electronics: A correlated transfer of single electrons and Cooper pairs in systems of small tunnel junctions. Chap. 6. Mesoscopic Phenomena in Solids. New York: Elsevier, 173–271. doi: 10.1016/b978-0-444-88454-1.50012-7

Beenakker, C. W. J. (1991). Theory of Coulomb-blockade oscillations in the conductance of a quantum dot. Physical Review B, 44 (4), 1646–1656. doi: 10.1103/physrevb.44.1646

Grabert, H., Devoret, M. H. (Eds.) (1992). Single Charge Tunneling. Coulomb Blockade Phenomena In Nanostructures. New York: Plenum Press, 347. doi: 10.1007/978-1-4757-2166-9

Kruglyak, Yu. O. (2015). Nanoelectronics «bottom – up»: Current generation, generalized ohm’s law, elastic resistors, conductivity modes, thermoelectricity. ScienceRise, 7/2 (12), 76–100. doi: 10.15587/2313-8416.2015.45700

Kruglyak, Yu. O. (2014). The generalized hartree-fock method and its versions: from atoms and molecules to polymers. ScienceRise, 5/3 (5), 6–21. doi: 10.15587/2313-8416.2014.30726

Kruglyak, Yu. A. (2015). Quantum-chemical studies of quasi-one-dimensional electron systems. 1. Polyenes. ScienceRise, 5/2 (10), 69–105. doi: 10.15587/2313-8416.2015.42643

Kruglyak, Yu. A., Glushkov, A. V. et. al (2015). Quantum-mechanical studies of quasi-one-dimensional electron systems. Part 4, Chap. 2. Calculational Methods in Quantum Geometry and Chaos Theory. Odessa: TES Publishing House, 28–180. Available at: https://www.researchgate.net/publication/281811280_Quantum-mechanical_Studies_of_Quasi-One-Dimensional_Electron_Systems

Kruglyak, Yu. A., Kruglyak, N. E. (2011). Quantum-mechanical calculation of single-electron field transistor on benzene molecule Sensor Electronics and Microsystem Technologies, 8 (3), 60–70.

Krugljak, Ju. A., Krugljak, N. E. (2011). Odnojelektronnyj odnomolekuljarnyh polevoj tranzistor: kvantovomehanicheskoe i jelektrodinamicheskoe rassmotrenie na primere molekuly benzola. Vestnik Odesskogo gos. un-ta, 12, 201–214.

Kruglyak, Yu. O., Strikha, M. V. (2015). Lessons of nanoelectronics. The electric current and the second law of thermodynamics in the «bottom – up» approach. Sensor Electronics and Мicrosystem Technologies, 12 (2), 5–26.

Kruglyak, Yu. A. (2015). Nanoelectronics «bottom – up»: Thermodynamics of electric conductor, information-driven battery and quantum entropy. ScienceRise, 11/2 (16), 55–71. doi: 10.15587/2313-8416.2015.53495

Datta, S. (2012). Lessons from Nanoelectronics: A New Perspective on Transport. Hackensack, New Jersey: World Scientific Publishing Company, 492. doi: 10.1142/8029

Kruglyak, Yu. A. (2015). «Bottom – up» nanoelectronics: The Hall effects, measurement of electrochemical potentials and spin transport in the NEGF model. ScienceRise, 10/2 (15), 35–67. doi: 10.15587/2313-8416.2015.51353

Park, J., Pasupathy, A. N., Goldsmith, J. I., Chang, C., Yaish, Y., Petta, J. R. et. al (2002). Coulomb blockade and the Kondo effect in single-atom transistors. Nature, 417 (6890), 722–725. doi: 10.1038/nature00791

Liang, W., Shores, M. P., Bockrath, M., Long, J. R., Park, H. (2002). Kondo resonance in a single-molecule transistor. Nature, 417 (6890), 725–729. doi: 10.1038/nature00790

Kubatkin, S., Danilov, A., Hjort, M., Cornil, J., Brédas, J.-L., Stuhr-Hansen, N. et. al (2003). Single-electron transistor of a single organic molecule with access to several redox states. Nature, 425 (6959), 698–701. doi: 10.1038/nature02010

Osorio, E. A., O’Neill, K., Stuhr-Hansen, N., Nielsen, O. F., Bjørnholm, T., van der Zant, H. S. J. (2007). Addition Energies and Vibrational Fine Structure Measured in Electromigrated Single-Molecule Junctions Based on an Oligophenylenevinylene Derivative. Advanced Materials, 19 (2), 281–285. doi: 10.1002/adma.200601876

Danilov, A., Kubatkin, S., Kafanov, S., Hedegård, P., Stuhr-Hansen, N., Moth-Poulsen, K., Bjørnholm, T. (2008). Electronic Transport in Single Molecule Junctions: Control of the Molecule-Electrode Coupling through Intramolecular Tunneling Barriers. Nano Letters, 8 (1), 1–5. doi: 10.1021/nl071228o

Thijssen, J. M., Van der Zant, H. S. J. (2008). Charge transport and single-electron effects in nanoscale systems. Physica Status Solidi (b), 245 (8), 1455–1470. doi: 10.1002/pssb.200743470

Kaasbjerg, K., Flensberg, K. (2008). Strong Polarization-Induced Reduction of Addition Energies in Single-Molecule Nanojunctions. Nano Letters, 8 (11), 3809–3814. doi: 10.1021/nl8021708

Stokbro, K. (2010). First-Principles Modeling of Molecular Single-Electron Transistors. The Journal of Physical Chemistry C, 114 (48), 20461–20465. doi: 10.1021/jp104811r

Liang, W., Shores, M. P., Bockrath, M., Long, J. R., Park, H. (2002). Kondo resonance in a single-molecule transistor. Nature, 417 (6890), 725–729. doi: 10.1038/nature00790

Kouwenhoven, L. P., Marcus, C. M., McEuen, P. L., Tarucha, S., Westervelt, R. M., Wingreen, N. S. (1997). Electron Transport in Quantum Dots. Mesoscopic Electron Transport, 105–214. doi: 10.1007/978-94-015-8839-3_4

Meirav, U., Foxman, E. B. (1996). Single-electron phenomena in semiconductors. Semiconductor Science and Technology, 11 (3), 255–284. doi: 10.1088/0268-1242/11/3/003

Fulton, T. A., Dolan, G. J. (1987). Observation of single-electron charging effects in small tunnel junctions. Physical Review Letters, 59 (1), 109–112. doi: 10.1103/physrevlett.59.109

Scott-Thomas, J. H. F., Field, S. B., Kastner, M. A., Smith, H. I., Antoniadis, D. A. (1989). Conductance Oscillations Periodic in the Density of a One-Dimensional Electron Gas. Physical Review Letters, 62 (5), 583–586. doi: 10.1103/physrevlett.62.583

Reed, M., Randall, J., Aggarwal, R., Matyi, R., Moore, T., Wetsel, A. (1988). Observation of discrete electronic states in a zero-dimensional semiconductor nanostructure. Physical Review Letters, 60 (6), 535–537. doi: 10.1103/physrevlett.60.535

McEuen, P. L., Klein, D. L., Roth, R., Lim, A. K. L., Alivisatos, A. P. (1997). A Single Electron Transistor Made From Lead Cadmium Selenide Nanocrystals. Nature, 389 (6652), 699–701. doi: 10.1038/39535

Tans, S. J., Devoret, M. H., Dai, H., Thess, A., Smalley, R. E., Geerligs, L. J., Dekker, C. (1997). Individual single-wall carbon nanotubes as quantum wires. Nature, 386 (6624), 474–477. doi: 10.1038/386474a0

Bockrath, M. (1997). Single-Electron Transport in Ropes of Carbon Nanotubes. Science, 275 (5308), 1922–1925. doi: 10.1126/science.275.5308.1922

Kruglyak, Yu. (2014). Configuration interaction in the second quantization representation: basics with applications up tp full CI. ScienceRise, 4/2 (4), 98–115. doi: 10.15587/2313-8416.2014.28948

Kruglyak, Yu. A. (2015). Configuration interaction in the second quantization representation: basics with applications up tp full CI. Part 3, Chap. 2. Calculational Methods in Quantum Geometry and Chaos Theory. Odessa: TES Publishing House, 43–84.

Neugebauer, J., Scheffler, M. (1992). Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on Al(111). Physical Review B, 46 (24), 16067–16080. doi: 10.1103/physrevb.46.16067

Taylor, J., Guo, H., Wang, J. (2001). Ab initio modeling of quantum transport properties of molecular electronic devices. Physical Review B, 63 (24). doi: 10.1103/physrevb.63.245407

Soler, J. M., Artacho, E., Gale, J. D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D. (2002). The SIESTA method for ab initio order- N materials simulation. Journal of Physics: Condensed Matter, 14 (11), 2745–2779. doi: 10.1088/0953-8984/14/11/302

Brandbyge, M., Mozos, J.-L., Ordejón, P., Taylor, J., Stokbro, K. (2002). Density-functional method for nonequilibrium electron transport. Physical Review B, 65 (16). doi: 10.1103/physrevb.65.165401

Lide, D. R. (Ed.) (2010). Handbook of Chemistry and Physics. 90th Edition. CRC.

Gurvich, L. V., Karachevcev, G. V., Kondrat'ev, V. N., Lebedev, Ju. A., Medvedev, V. A., Potapov, V. K., Hodeev, Ju. S. (1974). Jenergii razryva himicheskih svjazej. Potencialy ionizacii i srodstvo k jelektronu. Moscow: Nauka, 351.

Rivière, J. C. (1966). The work function of gold. Applied Physics Letters, 8 (7), 172. doi: 10.1063/1.1754539

Lindner, R., Sekiya, H., Beyl, B., Müller-Dethlefs, K. (1993). Structure and Symmetry of the Benzene Cation. Angewandte Chemie International Edition in English, 32 (4), 603–606. doi: 10.1002/anie.199306031

Published

2016-01-25

Issue

Section

Physics and mathematics