Study of the thermal expansion coefficient of metals using the structural units method

Authors

DOI:

https://doi.org/10.15587/2313-8416.2019.156136

Keywords:

structural unit, thermal expansion coefficient, interatomic distance, atomic displacement

Abstract

The technique for calculating the thermal expansion coefficient using the structural units method are proposed, allowing to calculate and investigate the dependence of the volume compression and thermal expansion coefficients near the absolute zero point depending on structural units properties and substance thermodynamic parameters. The article presents calculations for some metals. The results can be used in various substance studies near the temperature of absolute zero

Author Biographies

Aleksandr Mochalov, Admiral Makarov National University of Shipbuilding Heroiv Ukrainy str., 9, Mykolaiv, Ukraine, 54025

Doctor of Technical Science, Head of Department, Director

Department of Physics

Institute of Correspondence and Distance Education

Natalia Shapoval, Admiral Makarov National University of Shipbuilding Heroiv Ukrainy str., 9, Mykolaiv, Ukraine, 54025

PhD, Assistant Professor

Department of Physics

Konstantin Evfimko, Admiral Makarov National University of Shipbuilding Heroiv Ukrainy str., 9, Mykolaiv, Ukraine, 54025

Senior Lecturer

Department of Physics

Sergiy Koval, Admiral Makarov National University of Shipbuilding Heroiv Ukrainy str., 9, Mykolaiv, Ukraine, 54025

PhD, Assistant Professor

Department of Physics

References

Sivyhin, D. V. (1950). Obshiy kyrs fiziki. Termodinamika i molekuliarnaya fizika [The general course of Physics. Thermodynamics and molecular physics]. Vol 2. Moscow: Science, 592.

Zachek, I. R., Kravchyk, I. M., Romanishin, B. M., Mikolayovich, G. V., Mikhaylovich, G. F.; Lopatinskiy, І. E. (Ed.) (2002). Kyrs fiziki [Physics course]. Lviv, 376.

Ignatova, A. M. (2013). Issledovanie vliyaniya koefficientov teplovogo rashyreniya na sceplyaemost sinteticheskogo mineralmogo splava s matallicheskoy armatyroy [Investigation of thermal expansion coefficient’s influence on the cohesiveness of syntactic mineral alloy with the metal armature]. Fundamental investigations, 10-5, 982–985.

Ojovan, M. (2008). Configurons: Thermodynamic Parameters and Symmetry Changes at Glass Transition. Entropy, 10 (3), 334–364. doi: http://doi.org/10.3390/e10030334

Resnick, R., Halliday, D. (1993). Podstawy fizyki [Fundamental Physics]. Warsaw: State scientific publishing.

Miln-Tomson, L. M., Komri, L. J. (1964). Chetyrehznachnye matemaicheskie tablici [Four-digit mathematical tables]. Moscow: Science, 245.

Mochalov, A. A., Gaisha, A. A., Evfimenko, K. D. (2009). Dinamika deformacii stryktyrnoy edinicy tverdogo tela ot vneshnego vozdeistviya [The dynamics of deformation of solid’s building block from the external action]. The magazine of nano- and electronic Physics, 1 (1), 70–79.

Sena, L. A. (1977). Edinitsi fizicheskih velichin i ih razmernosti [The Physical units and theirs dimensions]. Moscow: Science, 288.

Mochalov, A. A., Gaisha, A. A., Evfimenko, K. D. (2014). Issledovaniya temperatyrnyh harakteristik tverdogo tela na mikroyrovne s pomoshiy metoda stryktyrnih edinic [The investigation of solid’s thermal characteristics in the microlevel using the method of building blocks]. The magazine of nano- and electronic Physics, 4, 76–80.

Varshneya, A. K. (2006). Fundamentals of inorganic glasses. Sheffield: Society of Glass Technology.

Published

2019-02-08

Issue

Section

Technical Sciences