An improvement powerlifters’ training process with the use of information technology

Volodymyr Ashanin
Anatoliy Rovnyi
Vladlena Pasko
Ganna Poltoratska
Maksim Voitenko

Purpose: improving the training process powerlifters’ with use of information technologies.

Material & Methods: analysis and generalization of the literary sources and data of the Internet, pedagogical observations and the method of information modeling.

Results: computer program “Bench Press” has been developed for the organization and management of the training process.

Conclusion: developed an innovative software product that allows you to plan training loads based on the proposed sets of exercises.

Keywords: powerlifting, training process, information technology.

Introduction

Analysis of the literature shows that the researchers used different approaches to improve the training process of athletes [6; 9; 11; 15; 16; 18–22]. Powerlifting is the youngest among athletic sports – weightlifting, bodybuilding, kettlebell lifting. Popularity of powerlifting is explained by the simplicity, accessibility of this sport, rapid growth of results and favorable influence on the health of the athlete. Powerlifting exercises help to increase the level of muscle strength, strengthen the joints, help develop endurance, flexibility and other useful qualities, nurture the will, self-reliance, increase the working capacity of the whole organism. Achievement of high sports results in powerlifting, as in any other sport, is possible only on the condition of systematic training aimed at comprehensive physical development, the formation of strong-willed qualities, the desire for constant improvement in the technique of performing various kinds of exercises. Main task of powerlifting is the development of strength indicators – the ability to raise the maximum weight at one time in three basic exercises [2; 5; 17].

Analysis of scientific literature shows that at the present stage of the powerlifting development, athletes combine in the training process a variety of exercises aimed at developing maximum strength, in particular, plyometric exercises [4; 23].

Increasing the effectiveness of the training process in powerlifting depends on the rational planning of physical activities and the formation of techniques of competitive exercises. A particular problem for coaches is the individualization of the techniques of competitive exercises, but the anthropometric and physiological characteristics of powerlifters, the level of physical readiness, the features of the development of motor qualities and the formation of knowledge and skills. That is why a clear application of physical loads in the rational construction of the training process should be carried out taking into account the individual features of powerlifters.

Building a program for the physical training of powerlifters requires the analysis of a large number of individual indicators. One of the directions of solving this problem is the use of various computer technologies that help improve the management of the training process and optimize the obtaining of the necessary information [1; 8; 10; 12; 13]. The main arguments in favor of computer learning technologies are individualization, visibility, interactivity, the possibility of using combined forms of information representation and the implementation of independent learning, at the end affects the speed of mastering the material [3; 11; 14]. Given the above, we can assume that the introduction of computer technology is an actual and effective means of improving the training process of powerlifters.

Relationship of research with scientific programs, plans, themes. The research was carried out in accordance with the theme of the scientific research work of the Kharkov State Academy of Physical Culture 1.1 “Scientific and methodological foundations of the use of information technologies for the training of specialists in the field of physical culture and sports”, the state registration number 0111U003130.

The purpose of the research: improving the training process powerlifters’ with use of information technologies.

Research task is to develop a computer program “Bench Press”.

Material and Methods of the research

To solve the problems, the following research methods were used: analysis and generalization of the literary sources and data of the Internet network, pedagogical observations and the method of information modeling.
Results of the research and their discussion

1. When drawing up a training program in powerlifting for the development of strength, it is necessary to determine the maximum weight that an athlete can lift in each of the three basic exercises. For athletes, a program of light, medium and heavy workouts, where work is performed with different weights (for example, light workout – work with 50% of the maximum indicators, average – 65%, heavy – 90%).

2. The “Bench Press” program is designed for athletes of powerlifters and coaches. With its help, you can define a set of exercises for training, whose goal is to increase the maximum limit in exercise “Bench press” [7].

Program includes an information block, which lists the main literature on the technique of bench press. Function of generating a training complex, which is an integral part of computer development, will help beginners with the definition of a training program.

One of the functions of the program is the ability to pick up exercises for a certain cycle and teach them how to do it. To solve this problem created animations and descriptions for them, significantly simplify learning and help master the terminology.

Main component of the program is the corresponding record of training. When compiling a training program through recorded training, you can choose the weight, the number of approaches and times, based on the tonnage diagram and the number of bar lifts per workout. With the help of the program it is possible to conveniently monitor the observance of the regularity of variation of the load, which will greatly improve the training cycle and will avoid overtraining of the athlete.

When you start the program, you enter the main window (Figure 1), which contains the “Main Menu” and two lines for writing the login and password. If there is no account, you need to click on the “Register” button, and then the registration window will appear.

In this window you can register an account by selecting your login and password. After logging in to the account, it becomes possible to keep personal records. They will be available in the main menu.

After going to “Personal Records” (Figure 2), a window with four buttons appears. The first button “Training” – adds a template for one training day. It contains: Date, Number of bar lifts, Tonnage and Exercises / approaches are fields for filling.

The second button “Search” is designed to make a request. When you click OK, a search is performed among the available workouts.

With the help of the third button “Diagram” you can build a diagram of the number of lifts of the bar and tonnage. It is necessary for the analysis of cycles and the convenience of viewing the performance of training.

When you press the fourth “Print” button, the workout program is output to the printer. In the main menu in the “Technique of performance” tab there are two items (Figure 3).

1. “Starting position” – when you click on the start, you will see in detail and explain the setting of the bridge during the exercise.

2. “Technique of execution.” It consists of two foreshortenings of the exercise “Bench Press” and a text describing the technique of doing this exercise.
In the main menu there is also a tab “Auxiliary exercises”, which consists of three points (Figure 4):

1. “Phase of a muscle mass set”. It consists of a set of exercises (animation) accompanied by a textual description of the technique of performing movements.

2. “Intermediate phase”. It consists of a set of exercises (animation) accompanied by a text description of the technique of execution.

3. “Phase of preparation for the competition”. It consists of a set of exercises (animation) accompanied by a text description of the technique of execution.

In the main menu when you click on the tab “calculator for the bench press,” a transition is made to the calculator window (Fig. 5).

In it, you need to enter the weight on the rod and the number of repetitions with this weight. When you click on the “Calculate” button, this button displays the result with your repeated maximum (RM). By clicking on the “Training program” tab, a window appears in the main menu where you can generate an approximate training program using the “Number of workouts per week” and “Dead point” survey (Fig. 6). Also, there is a note with an approximate range of training.

By clicking on the “Literature” tab of the window for playing books and a list of books will appear in the main menu (Fig. 7).

Thus, computer simulation has been carried out; it has been possible to develop a software product that has enough functions to optimize the training process of powerlifters. Computer program “Bench Press” allows the coach to keep a record of individual and group sessions of physical, technical and competitive preparedness, on the basis of which the coach can receive recommendations on the use of complexes of special exercises in the individual training program for each athlete.

Conclusions

Conducted computer programming allowed to develop an innovative software product that allows you to plan training loads based on the proposed sets of exercises. Function of the program, with which you can follow the patterns of variation in load, makes it convenient to use and leads to an increase in the level of strength preparedness of athletes-powerlifters. Computer program “Bench press” can be applied in the practical activity of trainers with the aim of increasing the efficiency of the training process.

Prospects for further research are the introduction of the computer training program “Bench Press” in the training process for powerlifting to improve its quality and efficiency.
Conflict of interests. The authors declare that no conflict of interest.

Financing sources. This article didn’t get the financial support from the state, public or commercial organization.

References


5. Oleshko, V.H. (2011), Pilotsika sportivnymy u svolichykh vydah sportu [Training of athletes in power sports], DIA, Kyiv. (in Ukr.)


10. Pasko, V.V. (2010), “The use of computer technology in the training process in contact sports game (for example, rugby)”, Slobozans’kij naukovo-sportivniy visnik, No. 1-2, pp. 117-120. (in Ukr.)

11. Pasko, V.V. (2016), Innovatsiyi tekhnolohii udoskonalenya fiziachnosti ta tekhnichnosti pidhotovlenosti rehbitiv na etapi spetsializovanoi bazovoi pidhotovky: avtoref. dys. kand. nauk z fiz. vykhovannia ta sportu: 24.00.01 "Olimpiyskiy i profesiinyi sport" [Innovative technologies improving physical and technical preparedness specialized rugby players during basic training using computer technology], KhSAPC, Kharkiv. (in Ukr.)


Received: 09.09.2017.
Published: 31.10.2017.

Information about the Authors

Volodymyr Ashanin: PhD (Physics-Mathematics), Professor; Kharkiv State Academy of Physical Culture: Klochkivska str. 99, Kharkiv, 61058, Ukraine.

ORCID.Org/0000-0002-4705-9339
E-mail: ashaninv@mail.ru

This work is licensed under a Creative Commons 4.0 International (CC BY 4.0)
Anatoliy Rovnyi: Doctor of Science (Physical Education and Sport), Professor; Kharkiv State Academy of Physical Culture: Klochkovska str. 99, Kharkiv, 61058, Ukraine.
ORCID.ORG/0000-0003-0308-2534
E-mail: rovniyas@mail.ru

Vladlena Pasko: PhD (Physical Education and Sport); Kharkiv State Academy of Physical Culture: Klochkovskaya str. 99, Kharkiv, 61058, Ukraine.
ORCID.ORG/0000-0001-8215-9450
E-mail: vladlenap05@gmail.com

Ganna Poltoratska: senior lecturer of the department of informatics and biomechanics; Kharkiv State Academy of Physical Culture: Klochkovskaya str. 99, Kharkiv, 61058, Ukraine.
ORCID.ORG/0000-0002-0076-4727
E-mail: Anna5061984@rambler.ru

Maksim Voitenko: senior lecturer of the department of informatics and biomechanics; Kharkiv State Academy of Physical Culture: Klochkovskaya str. 99, Kharkiv, 61058, Ukraine.
ORCID.ORG/0000-0002-9026-547X
E-mail: maxvoitenko111@gmail.com