The effect of sodium chondroitin sulfate on free-radical processes in cartilage tissue of rats with osteoarthrosis

Authors

  • Yelizaveta Tikhova Taras Shevchenko National University of Kyiv Volodymyrska str., 64/13, Kyiv, Ukraine, 01601, Ukraine
  • Katerina Dvorshchenko Taras Shevchenko National University of Kyiv Volodymyrska str., 64/13, Kyiv, Ukraine, 01601, Ukraine
  • Oleksandr Korotkyi Taras Shevchenko National University of Kyiv Volodymyrska str., 64/13, Kyiv, Ukraine, 01601, Ukraine
  • Volodymyr Vereschaka Taras Shevchenko National University of Kyiv Volodymyrska str., 64/13, Kyiv, Ukraine, 01601, Ukraine

DOI:

https://doi.org/10.15587/2519-8025.2017.109318

Keywords:

osteoarthrosis, oxide stress, peroxide oxidation of lipids, cartilages, chondroitin sulfate

Abstract

It was established, that at osteoarthrosis, induced by the administration of monoiodine acetate, the oxide stress develops in the cartilage tissue of knee joints, at that the content of active forms of oxygen and products of lipids peroxide oxidation grows, especially: hydrogen peroxide, superoxide-anion radical, dienoic conjugates, RBA-active products and Schiff bases. Activities of xantinoxidase prooxidant enzyme and antioxidant superoxidysmutase also grew at the pathology. It was revealed, that at administering the preparation on the base of chondroitin sulfate, the content of active forms of oxygen and products of lipids peroxide oxidation decreased in the cartilage tissue of rats with chemically induced osteoarthrosis. The negative control proved that the preparation on the base of chondroitin sulfate doesn’t influence the shift of the prooxidant-antioxidant balance in experimental animals. The obtained data testify to antioxidant properties of this preparation

Author Biographies

Yelizaveta Tikhova, Taras Shevchenko National University of Kyiv Volodymyrska str., 64/13, Kyiv, Ukraine, 01601

Postgarduate student

Department of Biochemistry

ESC "Institute of Biology and Medicine"

Katerina Dvorshchenko, Taras Shevchenko National University of Kyiv Volodymyrska str., 64/13, Kyiv, Ukraine, 01601

Doctor of Biological Sciences, Head of the Research Laboratory

Laboratory "Biochemistry"

ESC "Institute of Biology and Medicine"

Oleksandr Korotkyi, Taras Shevchenko National University of Kyiv Volodymyrska str., 64/13, Kyiv, Ukraine, 01601

PhD, Associate Professor

Department of Biochemistry

NSC "Institute of Biology and Medicine"

Volodymyr Vereschaka, Taras Shevchenko National University of Kyiv Volodymyrska str., 64/13, Kyiv, Ukraine, 01601

MD, Senior Researcher

Department of SRL "Physico-chemical biology"        

ESC "Institute of Biology and Medicine"

References

  1. Martin, J. A., Buckwalter, J. A. (2002). Aging, articular cartilage chondrocyte senescence and osteoarthritis. Biogerontology, 3 (5), 257–264. doi: 10.1023/a:1020185404126
  2. Malfait, A. M. (2016). Osteoarthritis year in review 2015: biology. Osteoarthritis and Cartilage, 24 (1), 21–26. doi: 10.1016/j.joca.2015.09.010
  3. Sawitzke, A. D., Shi, H., Finco, M. F., Dunlop, D. D., Bingham, C. O., Harris, C. L. et. al. (2008). The effect of glucosamine and/or chondroitin sulfate on the progression of knee osteoarthritis: A report from the glucosamine/chondroitin arthritis intervention trial. Arthritis & Rheumatism, 58 (10), 3183–3191. doi: 10.1002/art.23973
  4. Clegg, D. O. Reda, D. J., Harris, C. L., Klein, M. A., O'Dell, J. R., Hooper, M. M. et. al. (2006). Glucosamine, chondroitin sulfate, and the two in combination for painful knee osteoarthritis. New England Journal of Medicine, 354 (8), 795–808.
  5. Wildi, L. M., Raynauld, J.-P., Martel-Pelletier, J., Beaulieu, A., Bessette, L., Morin, F. et. al. (2011). Chondroitin sulphate reduces both cartilage volume loss and bone marrow lesions in knee osteoarthritis patients starting as early as 6 months after initiation of therapy: a randomised, double-blind, placebo-controlled pilot study using MRI. Annals of the Rheumatic Diseases, 70 (6), 982–989. doi: 10.1136/ard.2010.140848
  6. Sawitzke, A. D., Shi, H., Finco, M. F., Dunlop, D. D., Harris, C. L., Singer, N. G. et. al. (2010). Clinical efficacy and safety of glucosamine, chondroitin sulphate, their combination, celecoxib or placebo taken to treat osteoarthritis of the knee: 2-year results from GAIT. Annals of the Rheumatic Diseases, 69 (8), 1459–1464. doi: 10.1136/ard.2009.120469
  7. Gus'kova, T. A. (2010). Doklinicheskoe toksikologicheskoe izuchenie lekarstvennyh sredstv kak garantiya bezopasnosti provedeniya ih klinicheskih issledovaniy. Toksikologicheskiy vestnik, 5, 2–5.
  8. Hartree, E. F. (1972). Determination of protein: A modification of the lowry method that gives a linear photometric response. Analytical Biochemistry, 48 (2), 422–427. doi: 10.1016/0003-2697(72)90094-2
  9. Sutherland, M. W., Learmonth, B. A. (1997). The Tetrazolium Dyes MTS and XTT Provide New Quantitative Assays for Superoxide and Superoxide Dismutase. Free Radical Research, 27 (3), 283–289. doi: 10.3109/10715769709065766
  10. Able, A. J., Guest, D. I., Sutherland, M. W. (1998). Use of a New Tetrazolium-Based Assay to Study the Production of Superoxide Radicals by Tobacco Cell Cultures Challenged with Avirulent Zoospores of Hashimoto, S. (1974). A new spectrophotometric assay method of xanthine oxidase in crude tissue homogenate. Analytical Biochemistry, 62 (2), 426–435. doi: 10.1016/0003-2697(74)90175-4
  11. Phytophthora parasiticavarnicotianae. Plant Physiology, 117 (2), 491–499. doi: 10.1104/pp.117.2.491
  12. Gay, C. A., Gebicki, J. M. (2003). Measurement of protein and lipid hydroperoxides in biological systems by the ferric–xylenol orange method. Analytical Biochemistry, 315 (1), 29–35. doi: 10.1016/s0003-2697(02)00606-1
  13. Gavrilov, V. B., Gavrilova, A. R., Hmara, N. F. (1988). Izmerenie dienovyh konyugatov v plazme krovi po UF-pogloshcheniyu geptanovyh i izopropanol'nyh ekstraktov. Laboratornoe delo, 2, 540–546.
  14. Kolesova, O. E., Markin, A. A., Fedorova, T. N. (1984). Perekisnoe okislenie lipidov i metody opredeleniya produktov lipoperoksidatsii v biologicheskih seredah. Laboratornoe delo, 9, 60–63.
  15. Orekhovich, V. N. (Ed.) (1977). Sovremennye metody v biohimii. Moscow: Meditsina, 392.
  16. Nasledov, A. D. (2006). Matematicheskie metody psihologicheskogo issledovaniya. Saint Petersburg: Rech', 166.
  17. Koike, M., Nojiri, H., Ozawa, Y., Watanabe, K., Muramatsu, Y., Kaneko, H. et. al. (2015). Mechanical overloading causes mitochondrial superoxide and SOD2 imbalance in chondrocytes resulting in cartilage degeneration. Scientific Reports, 5 (1). doi: 10.1038/srep11722
  18. Hille, R. (2006). Structure and Function of Xanthine Oxidoreductase. European Journal of Inorganic Chemistry, 2006 (10), 1913–1926. doi: 10.1002/ejic.200600087
  19. Aibibula, Z., Ailixiding, M., Iwata, M., Piao, J., Hara, Y., Okawa, A., Asou, Y. (2016). Xanthine oxidoreductase activation is implicated in the onset of metabolic arthritis. Biochemical and Biophysical Research Communications, 472 (1), 26–32. doi: 10.1016/j.bbrc.2016.02.039
  20. Stabler, T., Zura, R. D., Hsueh, M.-F., Kraus, V. B. (2015). Xanthine oxidase injurious response in acute joint injury. Clinica Chimica Acta, 451, 170–174. doi: 10.1016/j.cca.2015.09.025
  21. Hanachi, N. et. al. (2009). Comparison of xanthine oxidase levels in synovial fluid from patients with rheumatoid arthritis and other joint inflammations. Saudi medical journal, 30 (11), 1422–1425.
  22. Na, J.-Y., Song, K., Kim, S., Kwon, J. (2016). Rutin protects rat articular chondrocytes against oxidative stress induced by hydrogen peroxide through SIRT1 activation. Biochemical and Biophysical Research Communications, 473 (4), 1301–1308. doi: 10.1016/j.bbrc.2016.04.064
  23. Rojkind, M., Dominguez-Rosales, J.-A., Nieto, N., Greenwel, P. (2002). Role of hydrogen peroxide and oxidative stress in healing responses. Cellular and Molecular Life Sciences, 59 (11), 1872–1891. doi: 10.1007/pl00012511
  24. Henrotin, Y., Bruckner, P., Pujol, J.-P. (2003). The role of reactive oxygen species in homeostasis and degradation of cartilage. Osteoarthritis and Cartilage, 11 (10), 747–755. doi: 10.1016/s1063-4584(03)00150-x
  25. Berlett, B. S., Stadtman, E. R. (1997). Protein Oxidation in Aging, Disease, and Oxidative Stress. Journal of Biological Chemistry, 272 (33), 20313–20316. doi: 10.1074/jbc.272.33.20313
  26. Del Rio, D., Stewart, A. J., Pellegrini, N. (2005). A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutrition, Metabolism and Cardiovascular Diseases, 15 (4), 316–328. doi: 10.1016/j.numecd.2005.05.003
  27. Dalle-Donne, I., Rossi, R., Giustarini, D., Milzani, A., Colombo, R. (2003). Protein carbonyl groups as biomarkers of oxidative stress. Clinica Chimica Acta, 329 (1-2), 23–38. doi: 10.1016/s0009-8981(03)00003-2
  28. Tiku, M. L., Shah, R., Allison, G. T. (2000). Evidence Linking Chondrocyte Lipid Peroxidation to Cartilage Matrix Protein Degradation. Journal of Biological Chemistry, 275 (26), 20069–20076. doi: 10.1074/jbc.m907604199
  29. Henrotin, Y., Kurz, B., Aigner, T. (2005). Oxygen and reactive oxygen species in cartilage degradation: friends or foes? Osteoarthritis and Cartilage, 13 (8), 643–654. doi: 10.1016/j.joca.2005.04.002
  30. Tiku, M., Allison, G., Naik, K., Karry, S. (2003). Malondialdehyde oxidation of cartilage collagen by chondrocytes. Osteoarthritis and Cartilage, 11 (3), 159–166. doi: 10.1016/s1063-4584(02)00348-5
  31. Badokin, V. V. (2009). Preparaty hondroitina sul'fata v terapii osteoartroza. RMZH «Revmatologiya», 21, 1461.
  32. Anikin, S. G., Alekseeva, L. I. (2012). Chondroitin sulfate: the mechanisms of action, its efficacy and safety in the therapy of osteoarthrosis. Modern Rheumatology Journal, 3, 78. doi: 10.14412/1996-7012-2012-753

Published

2017-08-31

How to Cite

Tikhova, Y., Dvorshchenko, K., Korotkyi, O., & Vereschaka, V. (2017). The effect of sodium chondroitin sulfate on free-radical processes in cartilage tissue of rats with osteoarthrosis. ScienceRise: Biological Science, (4 (7), 26–30. https://doi.org/10.15587/2519-8025.2017.109318

Issue

Section

Biological Sciences