Development and use of the program of automatic problem solving when conducting practical classes in physics at the university

Authors

DOI:

https://doi.org/10.15587/2519-4984.2021.241236

Keywords:

practical lesson, software for solving problems, examples of solving physics problems, automatic problem solving in physics

Abstract

The creation of a virtual educational environment, consisting of an information space that ensures the availability of unlimited educational material through communication means, a virtual or real communication channel between a student and a teacher, increases the role of self-education, the dominance of learning over teaching. Paraphrasing [1], we can say that physics is owned not by the one who knows the formulas and definitions, but by the one who, with their help, can solve physical problems (PP). Similarly to the words of E. Fermi [2]: "A person knows physics if he/she can solve problems." The ability to solve PP contributes to the concretization of students' knowledge; without it, there is a separation of theoretical, lecture, educational material from the main task of any learning process – the practical application of accumulated knowledge and skills. Solving of PP contributes to the development of mental activity, the formation of creativity, intelligence, observation, independence and accuracy, is one of the forms of repetition, control and assessment of knowledge. At the same time, it is the solution of problems that is the most difficult element of physical education, causing methodological, didactic, psychological, and mathematical difficulties.

It is known, that along with the traditional methods of solving PP: arithmetic, algebraic, geometric, graphic, experimental, since the beginning of the 2000s, information technology, computer technology, and programs - answer books have been actively used. The traditionally difficult issue of solving problems in physics requires both the improvement of classical methods and the development of new software tools for solving problems. The paper discusses the possibilities of using computers to solve various types of physical problems, the use of a site, created by the author, with considered examples of solving more than 2500 problems in physics, a developed program for automatic solution of problems in physics (APS - automatic physics solver) during practical exercises.

Author Biography

Alexandr Shamshin, National Academy of National Guard of Ukraine

PhD, Assistant Professor

Department of Fundamental Disciplines

References

  1. Losev, A. F. (1988). Derzanie dukha. Moscow: Sovetskii pisatel, 210.
  2. Tikhomirova, S. A. (2003). Didakticheskie materialy po fizike, 7-11 klassy. Moscow: Shk. Pressa, 106.
  3. Zenkina, S., Suvorova, T., Pankratova, O., Filimanyuk, L. (2019). The Method of Design of Electronic Advanced Training Courses for the Development of Information Competence of the Teacher. Proceedings of SLET-2019 – International Scientific Conference Innovative Approaches to the Application of Digital Technologies in Education and Research. Stavropol – Dombay, 366–375. Available at: http://ceur-ws.org/Vol-2494/paper_35.pdf
  4. Petrosian, V. G. (2009). Reshenie fizicheskikh zadach s pomoschiu kompiutera kak sostavliaiuschaia fizicheskogo obrazovaniia. Nalchik, 482.
  5. Zeleniak, O. P. (2012). Modeliuvannia dynamichnoi heometrychnoi konfihuratsii. Kompiuter u shkoli ta simi, 4, 33–40. Available at: http://nbuv.gov.ua/UJRN/komp_2012_4_13
  6. Bakhrushyn, V. (2018). Yakist serednoi osvity: pro shcho svidchat rezultaty ZNO. Available at: https://nus.org.ua/view/yakist-serednoyi-osvity-pro-shho-svidchat-rezultaty-zno/
  7. Kylmukhametova, N. T. (2012). Preodolenye matematycheskykh zatrudnenyi pry reshenyy zadach po fyzyke. Sterlytamak. Available at: http://npopy54.narod.ru/download/fizika.docx
  8. Shamshin, A. P. Physics Teaching Materials. Available at: http://bog5.in.ua
  9. Solovova, N. V., Dmitriev, D. S., Sukhankina, N. V., Dmitrieva, D. S. (2020). TSifrovaia pedagogika: tekhnologii i metody. Samara: Izd-vo Samarskogo un-ta, 128.
  10. Maier, R. V. (2012). Zadachi, algoritmy, programmy. Glazov: Glazovsk. gos. ped. in-t. Available at: http://maier-rv.glazov.net
  11. Berdennikova, M. G. (2010). Reshenie zadach po fizike s ispolzovaniem kompiuternoi programmy: metod, ukazaniia k samostoiatelnoi rabote. Arkhangelsk: SAFU, 16.
  12. Lvov, M., Kuzmenkov, S., Kravtsov, H. (2019). About One Approach to Building Systems for Testing Physical Knowledge. CEUR Workshop Proceedings, 2393, 1–16.
  13. Lvov, M., Kuzmenkov, S., Kravtsov, H. (2020). System for Testing Physics Knowledge. International Conference on Information and Communication Technologies in Education, Research, and Industrial Applications. Communications in Computer and Information Science, CCIS, 1175, 186–209. doi: http://doi.org/10.1007/978-3-030-39459-2_9
  14. Kravtsov, H. (2009). Evaluation Metrics of Electronic Learning Resources Quality. Information Technologies in Education, 3, 141–147. doi: http://doi.org/10.14308/ite000065
  15. Petrosian, V. G., Likhitskaia, I. V., Beitokova, L. R., Gazarian, R. M. (2003). Reshenie fizicheskikh zadach s pomoschiu kompiutera. Nalchik: Kab.-Balk. un-t, 256.
  16. BYJU'S Online Calculator. Available at: https://byjus.com/physics-calculators/
  17. Physics calculators. Omni calculator. Available at: https://www.omnicalculator.com/physics
  18. The formulas of Physics 101SE. Praeter Sofware. Available at: http://www.praetersoftware.com/products/physics101/formula.html#list
  19. Top 30 Best Free Math software you can use (2019). Available at: https://thegeekpage.com/best-free-math-softwares/
  20. List of computer simulation software. Available at: http://en.wikipedia.org/wiki/List_of_computer_simulation_software
  21. Shamshin, A. P. (2012). Kompyuterniy laboratorniy praktikum po magnetizmu, kolebaniyam i mekhanike s ispolzovaniem LabVIEW, MATLAB i Word. Inzhenernoe i nauchnoe prilozheniya na baze tekhnologiy National Instruments. Moscow, 195–197.
  22. Shamshin, O. P. (2016). Laboratorni roboty z vykorystanniam smartfonu u fizychnomu praktykumi. Novitni kompiuterni tekhnolohii, 14, 131–132.
  23. Shamshin, O. P. (2017). Dystantsiini laboratorni roboty u fizychnomu praktykumi. Novitni kompiuterni tekhnolohii, 15, 185–188
  24. Selevko, G. K. (1998). Sovremennye obrazovatelnye tekhnologii. Moscow: Narodnoe obrazovanie, 256.
  25. Pegov, A. A., Pianykh, E. G. (2010). Ispolzovanie sovremennykh informatsionnykh i kommunikatsionnykh tekhnologii v uchebnom protsesse. Available at: https://www.tspu.edu.ru/images/faculties/fmf/files/UMK/lek.pdf
  26. Volkenshtein, V. S. (1985). Sbornik zadach po obschemu kursu fiziki. Moscow: Nauka, 384.
  27. Balash, V. A. (1983). Zadachi po fizike i metody ikh resheniia. Moscow: Prosveschenie, 434.
  28. Igropulo, V. S., Viaznikov, N. V. (2000). Fizika: algoritmy, zadachi, resheniia. Moscow: Ileksa, Stavropol: Servisshkola, 592.
  29. Pol, H., Harskamp, E., Suhre, C. (2005). Solving physics problems with the help of computer‐assisted instruction. International Journal of Science Education, 27 (4), 451–469. doi: http://doi.org/10.1080/0950069042000266164
  30. Savchenko, E. V. (2020). Usage of basic problem-solving techniques in the discipline of general physics in higher school. Sovremennoe Obrazovanie, 3, 34–48. doi: http://doi.org/10.25136/2409-8736.2020.3.31599
  31. Dmitriev, V. M., Filippov, A. Iu., Gandzha, T. V., Dmitriev, I. V. (2010). Kompiuternoe modelirovanie fizicheskikh zadach. Tomsk: V-Spektr, 248.

Downloads

Published

2021-09-30

How to Cite

Shamshin, A. (2021). Development and use of the program of automatic problem solving when conducting practical classes in physics at the university. ScienceRise: Pedagogical Education, (5 (44), 23–29. https://doi.org/10.15587/2519-4984.2021.241236

Issue

Section

Pedagogical Education