Spinal muscular atrophy – problems of pathogenesis and choice of treatment

Authors

  • Dmitry Kolisnyk Bohomolets National Medical University Tarasa Shevchenka blvd., 13, Kyiv, Ukraine, 01601, Ukraine https://orcid.org/0000-0002-6767-3002
  • Natalia Turchyna Bohomolets National Medical University Tarasa Shevchenka blvd., 13, Kyiv, Ukraine, 01601, Ukraine

DOI:

https://doi.org/10.15587/2519-4798.2017.107795

Keywords:

SMA, SMN1, splicing, axonal transport, valproic acid, antisense oligonucleotides, Nusinersen

Abstract

Aim. The use of inhibitors of histones deacetylase, especially valproates together with the vitamin therapy and the complex of physical exercises was the main method of the treatment of patients with SMA till today. The elaboration of the first, officially acknowledged FDA preparation for SMA treatment forces to review the expedience of the complex therapy using valporoic acid, vitamin additives and physical exercises.

 Methods. The study included 12 patients with different forms of amyotrophy. Depending on the complex of received therapeutic arrangements, they were divided in 4 groups. The treatment effectiveness was estimated in points of Hammersmith scale of the motor function. The comparison of the treatment effectiveness in different groups of patients was realized with the calculation of Student coefficients. 

Result., Motor possibilities of patients in all groups essentially differed from each other depending on SMA type. The number of points, received by patients with the same SMA type, almost didn’t differ depending of a group of patients.  

Conclusions. Motor possibilities of patients are mainly connected with their initial phenotype, only partially influenced by the used treatment methods. The effectiveness of medical means at SMA depends not on the quantity of selected groups of preparations and additional treatment methods but on the initial phenotype

Author Biography

Natalia Turchyna, Bohomolets National Medical University Tarasa Shevchenka blvd., 13, Kyiv, Ukraine, 01601

PhD, Associate Professor

Department of Neurology

References

  1. Markowitz, J. A., Singh, P., Darras, B. T. (2012). Spinal Muscular Atrophy: A Clinical and Research Update. Pediatric Neurology, 46 (1), 1–12. doi: 10.1016/j.pediatrneurol.2011.09.001
  2. Prior, T. W., Nagan, N. (2016). Spinal Muscular Atrophy: Overview of Molecular Diagnostic Approaches. Current Protocols in Human Genetics, 9 (27), 1–13. doi: 10.1002/0471142905.hg0927s88
  3. Pedachenko, E. G., Yarmolyuk, E. S. (2016). Orfannye i redkie zabolevaniya v neyrohirurgii: priglashenie k diskussii. Ukrains'kiy neyrohіrurgіchniy zhurnal, 2, 5–17.
  4. Seliverstov, Yu. A., Klyushnikov, S. A., Illarioshkin, S. N. (2015). Spinal'nye myshechnye atrofii: ponyatie, differentsial'naya diagnostika, perspektivy lecheniya. Nervnye bolezni, 3, 9–17.
  5. Kolb, S. J., Kissel, J. T. (2015). Spinal Muscular Atrophy. Neurologic Clinics, 33 (4), 831–846. doi: 10.1016/j.ncl.2015.07.004
  6. Russman, B. S. (2007). Spinal Muscular Atrophy: Clinical Classification and Disease Heterogeneity. Journal of Child Neurology, 22 (8), 946–951. doi: 10.1177/0883073807305673
  7. Wirth, B. (2000). An Update of the Mutation Spectrum of the Survival Motor Neuron Gene (SMN1) in Autosomal Recessive Spinal Muscular Atrophy (SMA). Human Mutation, 15 (3), 228–237. doi: 10.1002/(sici)1098-1004(200003)15:3<228::aid-humu3>3.0.co;2-9
  8. Zabnenkova, V. V., Dadali, E. L., Polyakov, A. V. (2013). Proksimal'naya spinal'naya myshechnaya atrofiya tipov I–IV: osobennosti molekulyarno-geneticheskoy diagnostiki. Nervno-myshechnye bolezni, 3, 27–31.
  9. Zhu, J., Mayeda, A., Krainer, A. R. (2001). Exon Identity Established through Differential Antagonism between Exonic Splicing Silencer-Bound hnRNP A1 and Enhancer-Bound SR Proteins. Molecular Cell, 8 (6), 1351–1361. doi: 10.1016/s1097-2765(01)00409-9
  10. Kiss, T. (2004). Biogenesis of small nuclear RNPs. Journal of Cell Science, 117 (25), 5949–5951. doi: 10.1242/jcs.01487
  11. Fallini, C., Zhang, H., Su, Y., Silani, V., Singer, R. H., Rossoll, W., Bassell, G. J. (2011). The Survival of Motor Neuron (SMN) Protein Interacts with the mRNA-Binding Protein HuD and Regulates Localization of Poly(A) mRNA in Primary Motor Neuron Axons. Journal of Neuroscience, 31 (10), 3914–3925. doi: 10.1523/jneurosci.3631-10.2011
  12. Sleeman, J. (2013). Small nuclear RNAs and mRNAs: linking RNA processing and transport to spinal muscular atrophy. Biochemical Society Transactions, 41 (4), 871–875. doi: 10.1042/bst20120016
  13. Fallini, C., Bassell, G. J., Rossoll, W. (2012). Spinal muscular atrophy: The role of SMN in axonal mRNA regulation. Brain Research, 1462, 81–92. doi: 10.1016/j.brainres.2012.01.044
  14. Fallini, C., Rouanet, J. P., Donlin-Asp, P. G., Guo, P., Zhang, H., Singer, R. H. et. al. (2013). Dynamics of survival of motor neuron (SMN) protein interaction with the mRNA-binding protein IMP1 facilitates its trafficking into motor neuron axons. Developmental Neurobiology, 74 (3), 319–332. doi: 10.1002/dneu.22111
  15. Fallini, C., Donlin-Asp, P. G., Rouanet, J. P., Bassell, G. J., Rossoll, W. (2016). Deficiency of the Survival of Motor Neuron Protein Impairs mRNA Localization and Local Translation in the Growth Cone of Motor Neurons. Journal of Neuroscience, 36 (13), 3811–3820. doi: 10.1523/jneurosci.2396-15.2016
  16. Medrano, S., Monges, S., Gravina, L. P., Alias, L., Mozzoni, J., Araoz, H. V. et. al. (2016). Genotype–phenotype correlation of SMN locus genes in spinal muscular atrophy children from Argentina. European Journal of Paediatric Neurology, 20 (6), 910–917. doi: 10.1016/j.ejpn.2016.07.017
  17. Donlin-Asp, P. G., Fallini, C., Campos, J., Chou, C.-C., Merritt, M. E., Phan, H. C. et. al. (2017). The Survival of Motor Neuron Protein Acts as a Molecular Chaperone for mRNP Assembly. Cell Reports, 18 (7), 1660–1673. doi: 10.1016/j.celrep.2017.01.059
  18. Hammond, S. M., Hazell, G., Shabanpoor, F., Saleh, A. F., Bowerman, M., Sleigh, J. N. et. al. (2016). Systemic peptide-mediated oligonucleotide therapy improves long-term survival in spinal muscular atrophy. Proceedings of the National Academy of Sciences, 113 (39), 10962–10967. doi: 10.1073/pnas.1605731113
  19. Singh, N. N., Lee, B. M., DiDonato, C. J., Singh, R. N. (2015). Mechanistic principles of antisense targets for the treatment of spinal muscular atrophy. Future Medicinal Chemistry, 7 (13), 1793–1808. doi: 10.4155/fmc.15.101
  20. Corey, D. R. (2017). Nusinersen, an antisense oligonucleotide drug for spinal muscular atrophy. Nature Neuroscience, 20 (4), 497–499. doi: 10.1038/nn.4508
  21. Singh, N. N., Howell, M. D., Androphy, E. J., Singh, R. N. (2017). How the discovery of ISS-N1 led to the first medical therapy for spinal muscular atrophy. Gene Therapy. doi: 10.1038/gt.2017.34
  22. Foust, K. D., Wang, X., McGovern, V. L., Braun, L., Bevan, A. K., Haidet, A. M. et. al. (2010). Rescue of the spinal muscular atrophy phenotype in a mouse model by early postnatal delivery of SMN. Nature Biotechnology, 28 (3), 271–274. doi: 10.1038/nbt.1610
  23. Armbruster, N., Lattanzi, A., Jeavons, M., Van Wittenberghe, L., Gjata, B., Marais, T. et. al. (2016). Efficacy and biodistribution analysis of intracerebroventricular administration of an optimized scAAV9-SMN1 vector in a mouse model of spinal muscular atrophy. Molecular Therapy – Methods & Clinical Development, 3, 16060. doi: 10.1038/mtm.2016.60
  24. Sokolik, V. V., Kolyada, A. K., Shatillo, A. V. (2014). Vliyanie val'proevoy kisloty na uroven' SMN belka v mononuklearah perifericheskoy krovi bol'nyh so spinal'noy myshechnoy atrofiey i razlichnym chislom kopiy gena SMN2. Zhurnal nevrologii i psihiatrii im. S. S. Korsakova, 114 (6), 53–56.
  25. Goncharova, A. Ya., Simonyan, V. A., Evtushenko, S. K., Belyakova, M. S., Evtushenko, I. S. (2012). Klinicheskiy sluchay pozdnego debyuta nedifferentsirovannoy spinal'noy amiotrofii. Mezhdunarodnyi nevrologicheskiy zhurnal, 51 (5), 131–133.
  26. M’yasoedov, V. V. (2016). Sluchay spinal'noy amiotrofii verdniga-goffmana. Kharkiv, 518.
  27. Aton, J., Davis, R. H., Jordan, K. C., Scott, C. B., Swoboda, K. J. (2013). Vitamin D Intake Is Inadequate in Spinal Muscular Atrophy Type I Cohort. Journal of Child Neurology, 29 (3), 374–380. doi: 10.1177/0883073812471857

Published

2017-07-31

How to Cite

Kolisnyk, D., & Turchyna, N. (2017). Spinal muscular atrophy – problems of pathogenesis and choice of treatment. ScienceRise: Medical Science, (7 (15), 15–20. https://doi.org/10.15587/2519-4798.2017.107795

Issue

Section

Medical Science