Pediatric surgical sepsis: diagnostics and intensive therapy

Authors

  • Elmira Satvaldieva Tashkent Pediatric Medical Institute, Uzbekistan https://orcid.org/0000-0002-8448-2670
  • Gulchehra Ashurova Tashkent Pediatric Medical Institute, Uzbekistan
  • Otabek Fayziev Tashkent Pediatric Medical Institute, Uzbekistan
  • Abdumalik Djalilov Clinic of Tashkent Pediatric Medical Institute, Uzbekistan

DOI:

https://doi.org/10.15587/2519-4798.2021.250239

Keywords:

pediatric sepsis, balanced crystalloids, respiratory support, septic shock

Abstract

The aim: Optimization of diagnostics and schemes of pathogenetic intensive therapy of surgical sepsis in children based on clinical and laboratory criteria and bacteriological monitoring.

Materials and methods: The research period is 2018-2020. The object of the study (n=73) – children with surgical pathology (widespread peritonitis, bacterial destruction of the lungs, post-traumatic brain hematomas, abdominal trauma, etc.). Research methods: microbiological monitoring to determine the sensitivity of the microorganism to antibiotics was carried out before and at the stages of treatment (sputum, urine, wound, bronchoalveolar lavage, tracheal aspirate, blood, contents from drainages, wound surface). Determination of the sensitivity of the isolated strains to antibiotics was carried out by the disk-diffusion method. To determine predictors of sepsis in surgical patients, clinical (mean arterial pressure (mAP), heart rate (HR), respiratory rate (RR), SpO2, etc. and laboratory parameters on days 1–2 (up to 48 hours) of sepsis identification, days 4 and 8 of intensive therapy. Procalcitonin was determined by immunofluorescence on a Triage® MeterPro analyzer (Biosite Diagnostics, USA). Blood gases and electrolytes were analyzed using a Stat Profile CCX analyzer (Nova Biomedical, USA).

Results: studies have shown the effectiveness of complex intensive care in 86.3 % of cases. Mortality was found in 13.7 % of cases. Patients with severe surgical pathology died: widespread peritonitis, severe TBI + coma with irreversible neurological disorders, urosepsis against the background of chronic renal failure, after repeated surgical interventions, due to the development of refractory septic shock (SS).

Conclusions. Early diagnosis of sepsis, rational early ABT under the control of microbiological monitoring, non-aggressive infusion therapy with early prescription of vasopressors (SS) with constant monitoring of the child's main life support organs contribute to an improvement in sepsis outcomes and a decrease in mortality

Author Biographies

Elmira Satvaldieva, Tashkent Pediatric Medical Institute

Doctor of Medical Sciences, Professor-Head

Department of Anesthesiology and Reanimatology Pediatric Anesthesiology and Reanimatology

Gulchehra Ashurova, Tashkent Pediatric Medical Institute

Assistant

Department of Anesthesiology and Reanimatology Pediatric Anesthesiology and Reanimatology

Otabek Fayziev, Tashkent Pediatric Medical Institute

Assistant

Department of Anesthesiology and Reanimatology, Pediatric Anesthesiology and Reanimatology

Abdumalik Djalilov, Clinic of Tashkent Pediatric Medical Institute

Chief Physician

References

  1. Rudnov, V. A., Kulabukhov, V. V. (2015). Sepsis and teragnostics on the way to personalized medicine. Bulletin of Anesthesiology and Reanimatology, 6, 60–67.
  2. Vincent, J.-L., Martin, G. S., Levy, M. M. (2016). qSOFA does not replace SIRS in the definition of sepsis. Critical Care, 20 (1). doi: http://doi.org/10.1186/s13054-016-1389-z
  3. Mironov, P. I., Lekmanov, A. U. (2013). Diagnostic and therapeutic aspects of sepsis in pediatrics from the point surviving Sepsis Campa. Russian Bulletin of Pediatric Surgery, Anesthesiology and Reanimatology, 3 (2), 38–47.
  4. Weiss, S. L., Fitzgerald, J. C., Pappachan, J., Wheeler, D., Jaramillo-Bustamante, J. C., Salloo, A. et. al. (2015). Global Epidemiology of Pediatric Severe Sepsis: The Sepsis Prevalence, Outcomes, and Therapies Study. American Journal of Respiratory and Critical Care Medicine, 191 (10), 1147–1157. doi: http://doi.org/10.1164/rccm.201412-2323oc
  5. Dugani, S., Kissoon, N. (2017). Global advocacy needed for sepsis in children. Journal of Infection, 74, S61–S65. doi: http://doi.org/10.1016/s0163-4453(17)30193-7
  6. Plunkett, A., Tong, J. (2015). Sepsis in children. BMJ, 350 (10), h3017. doi: http://doi.org/10.1136/bmj.h3017
  7. Souza, D. C. de, Brandão, M. B., Piva, J. P. (2018). From the International Pediatric Sepsis Conference 2005 to the Sepsis-3 Consensus. Revista Brasileira de Terapia Intensiva, 30 (1). doi: http://doi.org/10.5935/0103-507x.20180005
  8. Machado, F., de Souza, D. (2018). Epidemiology of Pediatric Septic Shock. Journal of Pediatric Intensive Care, 8 (1), 3–10. doi: http://doi.org/10.1055/s-0038-1676634
  9. Tan, B., Wong, J. J.-M., Sultana, R., Koh, J. C. J. W., Jit, M., Mok, Y. H., Lee, J. H. (2019). Global Case-Fatality Rates in Pediatric Severe Sepsis and Septic Shock. JAMA Pediatrics, 173 (4), 352–261. doi: http://doi.org/10.1001/jamapediatrics.2018.4839
  10. Lekmаnov, А. U., Mironov, P. I., Rudnov, V. А., Kulаbukhov, V. V. (2018). modern definitions and principles of intensive care of sepsis in children. Messenger of anesthesiology and resuscitation, 15 (4), 61–69. doi: http://doi.org/10.21292/2078-5658-2018-15-4-61-69
  11. Singer, M., Deutschman, C. S., Seymour, C. W., Shankar-Hari, M., Annane, D., Bauer, M. et. al. (2016). The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA, 315 (8), 801–810. doi: http://doi.org/10.1001/jama.2016.0287
  12. Matics, T. J., Pinto, N. P., Sanchez-Pinto, L. N. (2019). Association of Organ Dysfunction Scores and Functional Outcomes Following Pediatric Critical Illness*. Pediatric Critical Care Medicine, 20 (8), 722–727. doi: http://doi.org/10.1097/pcc.0000000000001999
  13. Schlapbach, L. J., Straney, L., Bellomo, R., MacLaren, G., Pilcher, D. (2017). Prognostic accuracy of age-adapted SOFA, SIRS, PELOD-2, and qSOFA for in-hospital mortality among children with suspected infection admitted to the intensive care unit. Intensive Care Medicine, 44 (2), 179–188. doi: http://doi.org/10.1007/s00134-017-5021-8
  14. Dellinger, R. P., Levy, M. M., Rhodes, A., Annane, D., Gerlach, H. et. al. (2013). Surviving Sepsis Campaign: International Guidelines for Management of Severe Sepsis and Septic Shock, 2012. Intensive Care Medicine, 39 (2), 165–228. doi: http://doi.org/10.1007/s00134-012-2769-8
  15. Emr, B. M., Alcamo, A. M., Carcillo, J. A., Aneja, R. K., Mollen, K. P. (2018). Pediatric Sepsis Update: How Are Children Different? Surgical Infections, 19 (2), 176–183. doi: http://doi.org/10.1089/sur.2017.316
  16. Wheeler, D. S., Wong, H. R., Zingarelli, B. (2011). Pediatric Sepsis – Part I: “Children are not small adults”. The Open Inflammation Journal, 4, 4–15. doi: http://doi.org/10.2174/1875041901104010004
  17. Wheeler, D. S. (2011). Pediatric Sepsis: Markers, Mechanisms, and Management. The Open Inflammation Journal, 4 (1), 1–3. doi: http://doi.org/10.2174/1875041901104010001
  18. Velkov, V. V. (2012). Presepsin – the new highly effective biomarker of sepsis. Clinical and laboratory consultation, 3 (41), 64–70.
  19. Dewi, R., Somasetia, D. H., Risan, N. A. (2016). Procalcitonin, C-Reactive Protein and its Correlation with Severity Based on Pediatric Logistic Organ Dysfunction-2 (PELOD-2) Score in Pediatric Sepsis. American Journal of Epidemiology and Infectious Disease, 4 (3), 64–67.
  20. Agyeman, P. K. A., Schlapbach, L. J., Giannoni, E., Stocker, M., Posfay-Barbe, K. M., Heininger, U. et. al. (2017). Epidemiology of blood culture-proven bacterial sepsis in children in Switzerland: a population-based cohort study. The Lancet Child & Adolescent Health, 1 (2), 124–133. doi: http://doi.org/10.1016/s2352-4642(17)30010-x
  21. Sabirov, D. M., Satvaldieva, E. A. (2013). Prophylactic and therapeutic application of fluoroquinolones in surgery infection. Bulletin of emergency medicine, 2, 91–94. Available at: https://cyberleninka.ru/article/n/primenenie-ftorhinolonov-v-profilaktike-i-lechenii-hirurgicheskoy-infektsii
  22. Kuo, K.-C., Yeh, Y.-C., Chiu, I.-M., Tang, K.-S., Su, C.-M., Huang, Y.-H. (2020). The clinical features and therapy of community-acquired gram negative bacteremia in children less than three years old. Pediatrics & Neonatology, 61 (1), 51–57. doi: http://doi.org/10.1016/j.pedneo.2019.05.009
  23. Boeddha, N. P., Schlapbach, L. J., Driessen, G. J., Herberg, J. A., Rivero-Calle, I. et. al. (2018). Mortality and morbidity in community-acquired sepsis in European pediatric intensive care units: a prospective cohort study from the European Childhood Life-threatening Infectious Disease Study (EUCLIDS). Critical Care, 22 (1). doi: http://doi.org/10.1186/s13054-018-2052-7
  24. Hasan, G. M., Al-Eyadhy, A. A., Temsah, M.-H. A., Al-Haboob, A. A., Alkhateeb, M. A., Al-Sohime, F. (2018). Feasibility and efficacy of sepsis management guidelines in a pediatric intensive care unit in Saudi Arabia: a quality improvement initiative. International Journal for Quality in Health Care, 30 (8), 587–593. doi: http://doi.org/10.1093/intqhc/mzy077
  25. Oda, K., Matsuo, Y., Nagai, K., Tsumura, N., Sakata, Y., Kato, H. (2000). Sepsis in children. Pediatrics International, 42 (5), 528–533. doi: http://doi.org/10.1046/j.1442-200x.2000.01281.x
  26. Gupta, N., Richter, R., Robert, S., Kong, M. (2018). Viral Sepsis in Children. Frontiers in Pediatrics, 6. doi: http://doi.org/10.3389/fped.2018.00252
  27. Henriquez-Camacho, C., Losa, J. (2014). Biomarkers for Sepsis. BioMed Research International, 2014, 1–6. doi: http://doi.org/10.1155/2014/547818
  28. Medeiros, D. N. M., Ferranti, J. F., Delgado, A. F., de Carvalho, W. B. (2015). Colloids for the Initial Management of Severe Sepsis and Septic Shock in Pediatric Patients. Pediatric Emergency Care, 31 (11), e11–e16. doi: http://doi.org/10.1097/pec.0000000000000601
  29. Balamuth, F., Weiss, S. L., Neuman, M. I., Scott, H., Brady, P. W., Paul, R. et. al. (2014). Pediatric Severe Sepsis in U.S. Children’s Hospitals. Pediatric Critical Care Medicine, 15 (9), 798–805. doi: http://doi.org/10.1097/pcc.0000000000000225
  30. Schlapbach, L. J., Kissoon, N. (2018). Defining Pediatric Sepsis. JAMA Pediatrics, 172 (4), 313–314. doi: http://doi.org/10.1001/jamapediatrics.2017.5208
  31. Lekmanov, A. U., Mironov, P. I. (2020). Pediatric sepsis – time to reach agreement. Russian Bulletin of Perinatology and Pediatrics, 65 (3), 131–137. doi: http://doi.org/10.21508/1027-4065-2020-65-3-131-137
  32. Davis, A. L., Carcillo, J. A., Aneja, R. K., Deymann, A. J., Lin, J. C., Nguyen, T. C. et. al. (2017). American College of Critical Care Medicine Clinical Practice Parameters for Hemodynamic Support of Pediatric and Neonatal Septic Shock. Critical Care Medicine, 45 (6), 1061–1093. doi: http://doi.org/10.1097/ccm.0000000000002425
  33. Rhodes, A., Evans, L. E., Alhazzani, W., Levy, M. M., Antonelli, M., Ferrer, R. et. al. (2017). Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Medicine, 43 (3), 304–377. doi: http://doi.org/10.1007/s00134-017-4683-6
  34. Nazaretyan, V. V., Lukach, V. N., Kulikov, A. V. (2017). The Effectiveness of Combined Use of Antioxidant and Glutamine in Abdominal Sepsis. General Reanimatology, 13 (2), 52–60. doi: http://doi.org/10.15360/1813-9779-2017-2-52-60
  35. Maltsev, D. V. (2016). Immunoglobulin therapy of sepsis. Hirurgiya Ukrainy, 2, 120–130.

Downloads

Published

2021-11-30

How to Cite

Satvaldieva, E., Ashurova, G., Fayziev, O., & Djalilov, A. (2021). Pediatric surgical sepsis: diagnostics and intensive therapy. ScienceRise: Medical Science, (6(45), 34–42. https://doi.org/10.15587/2519-4798.2021.250239

Issue

Section

Medical Science