COVID-19 and thyroid disease: clinical course and prognosis

Authors

DOI:

https://doi.org/10.15587/2519-4798.2022.252809

Keywords:

thyroid pathology, hypothyroidism, thyrotoxicosis, thyroiditis, COVID-19, vaccination, consequences

Abstract

The aim is to analyze current scientific data on the prevalence of thyroid dysfunction in patients with COVID-19 and to evaluate the relationship between possible complications of COVID-19 and vaccination.

Materials and methods. Open digital archive of journal articles on biomedical and biological sciences of the National Institutes of Health (USA), developed by the National Center for Biotechnological Information of the National Medical Library (USA) – PubMed, Google Academy and Academic Journals.

Results. The development of thyroid diseases in SARS-CoV-2 may be associated with various mechanisms of its damage, including an excessive immune response, infection-induced immunodeficiency, or direct cell damage due to significant tissue tropism and high affinity of SARS-CoV-2 to thyroid tissue. Possible mechanisms of formation of post-vaccination dysfunction of the thyroid gland are proposed.

Conclusions. Thyroid hormone deficiency is associated with an increased risk of adverse events and in-hospital mortality of COVID-19 and depended on the age of the patient. The severe course of Covid-19 is characterized by an increase in the prevalence of TT secondary to destructive or inflammatory thyroiditis. Thyroid-related thyrotoxicosis exacerbates the clinical course of comorbidities and long-term consequences, such as autoimmune hypothyroidism, which occurs in patients of all ages and with any severity of COVID-19.

The prevalence of TD in patients with COVID-19 varies from 13 to 64 %. 2. The presence of thyroid dysfunction is positively correlated with the clinical severity of COVID-19. Patients with confirmed thyroid disease should receive COVID-19 vaccine to reduce the risk of morbidity and mortality from COVID-19 infection

Author Biographies

Daria Korchagina, State Institution "V. Danilevsky Institute for Endocrine Pathology Problems of the National Academy of Medical Sciences of Ukraine"

PhD

Iegor Korchagin, Medical Diagnostic Centre «RISHON CLINIC»

PhD

References

  1. Chakraborty, U., Ghosh, S., Chandra, A., Ray, A. K. (2020). Subacute thyroiditis as a presenting manifestation of COVID-19: a report of an exceedingly rare clinical entity. BMJ Case Reports, 13 (12), e239953. doi: http://doi.org/10.1136/bcr-2020-239953
  2. Schimmel, J., Alba, E. L., Chen, A., Russell, M., Srinath, R. (2021). Letter to the Editor: Thyroiditis and Thyrotoxicosis After the SARS-CoV-2 mRNA Vaccine. Thyroid, 31 (9), 1440–1440. doi: http://doi.org/10.1089/thy.2021.0184
  3. Wu, Z., McGoogan, J. M. (2020). Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China. JAMA, 323 (13), 1239–1242. doi: http://doi.org/10.1001/jama.2020.2648
  4. Kim, S. Y., Kim, D. W. (2020). Does the Clinical Spectrum of Coronavirus Disease 2019 (COVID-19) Show Regional Differences? Clinical and Experimental Otorhinolaryngology, 13 (2), 83–84. doi: http://doi.org/10.21053/ceo.2020.00612
  5. Trimboli, P., Cappelli, C., Croce, L., Scappaticcio, L., Chiovato, L., Rotondi, M. (2021). COVID-19-Associated Subacute Thyroiditis: Evidence-Based Data From a Systematic Review. Frontiers in Endocrinology, 12. doi: http://doi.org/10.3389/fendo.2021.707726
  6. Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y. et. al. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet, 395 (10223), 497–506. doi: http://doi.org/10.1016/s0140-6736(20)30183-5
  7. A Abobaker, A., Darrat, M. (2021). The association between biochemically confirmed thyroid gland disorder and morbidity and mortality in patients with COVID‐19. Journal of Medical Virology, 93 (12), 6449–6450. doi: http://doi.org/10.1002/jmv.27213
  8. Zhou, F., Yu, T., Du, R., Fan, G., Liu, Y., Liu, Z. et. al. (2020). Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet, 395 (10229), 1054–1062. doi: http://doi.org/10.1016/s0140-6736(20)30566-3
  9. Edwards, K., Hussain, I. (2021). Two Cases of Severe Autoimmune Thyrotoxicosis Following SARS-CoV-2 Infection. Journal of Investigative Medicine High Impact Case Reports, 9. doi: http://doi.org/10.1177/23247096211056497
  10. Kim, S.-Y., Yoo, D.-M., Min, C.-Y., Choi, H.-G. (2021). The Effects of Previous Thyroid Disease on the Susceptibility to, Morbidity of, and Mortality Due to COVID-19: A Nationwide Cohort Study in South Korea. Journal of Clinical Medicine, 10 (16), 3522. doi: http://doi.org/10.3390/jcm10163522
  11. Bakshi, S. S., Kalidoss, V. K. (2021). Is there an association between hypothyroidism and COVID 19?: A preliminary report. Wiener klinische Wochenschrift, 133 (7-8),414–415. doi: http://doi.org/10.1007/s00508-021-01813-2
  12. Dworakowska, D., Grossman, A. B. (2020). Thyroid disease in the time of COVID-19. Endocrine, 68 (3),471–474. doi: http://doi.org/10.1007/s12020-020-02364-8
  13. Sanyaolu, A., Okorie, C., Marinkovic, A., Patidar, R., Younis, K., Desai, P. et. al. (2020). Comorbidity and its Impact on Patients with COVID-19. SN Comprehensive Clinical Medicine, 2 (8), 1069–1076. doi: http://doi.org/10.1007/s42399-020-00363-4
  14. Dosi, R., Jain, G., Mehta, A. (2020). Clinical Characteristics, Comorbidities,and Outcome among 365 Patients of Coronavirus Disease2019at a Tertiary Care Centre in Central India. The Journal of the Association of Physicians of India, 68 (9),20–23.
  15. Van Gerwen, M., Alsen, M., Little, C., Barlow, J., Naymagon, L., Tremblay, D. et. al. (2020). Outcomes of Patients With Hypothyroidism and COVID-19: A Retrospective Cohort Study. Frontiers in Endocrinology, 11. doi: http://doi.org/10.3389/fendo.2020.00565
  16. Brojakowska, A., Eskandari, A., Bisserier, M., Bander, J., Garikipati, V. N. S., Hadri, L. et. al. (2021). Comorbidities, sequelae, blood biomarkers and their associated clinical outcomes in the Mount Sinai Health System COVID-19 patients. PLOS ONE, 16 (7), e0253660. doi: http://doi.org/10.1371/journal.pone.0253660
  17. Brix, T. H., Hegedüs, L., Hallas, J., Lund, L. C. (2021). Risk and course of SARS-CoV-2 infection in patients treated for hypothyroidism and hyperthyroidism. The Lancet Diabetes & Endocrinology, 9 (4), 197–199. doi: http://doi.org/10.1016/s2213-8587(21)00028-0
  18. Duntas, L. H., Jonklaas, J. (2021). COVID-19 and Thyroid Diseases: A Bidirectional Impact. Journal of the Endocrine Society, 5 (8). doi: http://doi.org/10.1210/jendso/bvab076
  19. Hariyanto, T. I., Kurniawan, A. (2020). Thyroid disease is associated with severe coronavirus disease 2019 (COVID-19) infection. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 14 (5), 1429–1430. doi: http://doi.org/10.1016/j.dsx.2020.07.044
  20. Lisco, G., De Tullio, A., Jirillo, E., Giagulli, V. A., De Pergola, G., Guastamacchia, E., Triggiani, V. (2021). Thyroid and COVID-19: a review on pathophysiological, clinical and organizational aspects. Journal of Endocrinological Investigation, 44 (9), 1801–1814. doi: http://doi.org/10.1007/s40618-021-01554-z
  21. Giovanella, L., Ruggeri, R. M., Ovčariček, P. P., Campenni, A., Treglia, G., Deandreis, D. (2021). Prevalence of thyroid dysfunction in patients with COVID-19: a systematic review. Clinical and Translational Imaging, 9 (3), 233–240. doi: http://doi.org/10.1007/s40336-021-00419-y
  22. Khoo, B., Tan, T., Clarke, S. A., Mills, E. G., Patel, B., Modi, M. et. al. (2020). Thyroid Function Before, During, and After COVID-19. The Journal of Clinical Endocrinology & Metabolism, 106 (2), e803–e811. doi: http://doi.org/10.1210/clinem/dgaa830
  23. Ippolito, S., Dentali, F., Tanda, M. L. (2020). SARS-CoV-2: a potential trigger for subacute thyroiditis? Insights from a case report. Journal of Endocrinological Investigation, 43 (8), 1171–1172. doi: http://doi.org/10.1007/s40618-020-01312-7
  24. Lui, D. T. W., Lee, C. H., Chow, W. S., Lee, A. C. H., Tam, A. R., Fong, C. H. Y. et. al. (2020). Thyroid Dysfunction in Relation to Immune Profile, Disease Status, and Outcome in 191 Patients with COVID-19. The Journal of Clinical Endocrinology & Metabolism, 106 (2), e926–e935. doi: http://doi.org/10.1210/clinem/dgaa813
  25. Sen, K., Sinha, A., Sen, S., Chakraborty, S., Alam, M. (2020). Thyroid Function Test in COVID-19 Patients: A Cross-Sectional Study in a Tertiary Care Hospital. Indian Journal of Endocrinology and Metabolism, 24 (6), 532–536. doi: http://doi.org/10.4103/ijem.ijem_779_20
  26. Caron, P. (2020). Thyroid disorders and SARS-CoV-2 infection: From pathophysiological mechanism to patient management. Annales d’Endocrinologie, 81 (5), 507–510. doi: http://doi.org/10.1016/j.ando.2020.09.001
  27. Șandru, F., Carsote, M., Petca, R., Gheorghisan-Galateanu, A., Petca, A., Valea, A., Dumitrașcu, M. (2021). COVID‑19‑related thyroid conditions (Review). Experimental and Therapeutic Medicine, 22 (1). doi: http://doi.org/10.3892/etm.2021.10188
  28. Siolos, A., Gartzonika, K., Tigas, S. (2021). Thyroiditis following vaccination against COVID-19: Report of two cases and review of the literature. Metabolism Open, 12, 100136. doi: http://doi.org/10.1016/j.metop.2021.100136
  29. Trimboli, P., Camponovo, C., Scappaticcio, L., Bellastella, G., Piccardo, A., Rotondi, M. (2021). Thyroid sequelae of COVID-19: a systematic review of reviews. Reviews in Endocrine and Metabolic Disorders, 22 (2), 485–491. doi: http://doi.org/10.1007/s11154-021-09653-1
  30. Daraei, M., Hasibi, M., Abdollahi, H., Mirabdolhagh Hazaveh, M., Zebaradst, J., Hajinoori, M., Asadollahi‐Amin, A. (2020). Possible role of hypothyroidism in the prognosis of COVID‐19. Internal Medicine Journal, 50 (11), 1410–1412. doi: http://doi.org/10.1111/imj.15000
  31. Speer, G., Somogyi, P. (2021). Thyroid complications of SARS and coronavirus disease 2019 (COVID-19). Endocrine Journal, 68 (2), 129–136. doi: http://doi.org/10.1507/endocrj.ej20-0443
  32. Martins, J. R. M., Villagelin, D. G. P., Carvalho, G. A., Vaisman, F., Teixeira, P. F. S., Scheffel, R. S., Sgarbi, J. A. (2021). Management of thyroid disorders during the COVID-19 outbreak: a position statement from the Thyroid Department of the Brazilian Society of Endocrinology and Metabolism (SBEM). Archives of Endocrinology and Metabolism, 65 (3), 368–375. doi: http://doi.org/10.20945/2359-3997000000352
  33. Pereira, D. N., Gontijo Silveira, L. F., Moreira Guimarães, M. M., Polanczyk, C. A., Sousa Nunes, A. G., de Moura Costa, A. S. et. al. (2021). Hypothyroidism does not lead to worse prognosis in COVID-19: findings from the Brazilian COVID-19 registry. doi: http://doi.org/10.1101/2021.11.03.21265685
  34. Novel Coronavirus (COVID-19) and the Thyroid: Frequently Asked Questions. Available at: https://www.thyroid.org/covid-19/coronavirus-frequently-questions/
  35. Montesinos, M. del M., Pellizas, C. G. (2019). Thyroid Hormone Action on Innate Immunity. Frontiers in Endocrinology, 10. doi: http://doi.org/10.3389/fendo.2019.00350
  36. McKechnie, J. L., Blish, C. A. (2020). The Innate Immune System: Fighting on the Front Lines or Fanning the Flames of COVID-19? Cell Host & Microbe, 27 (6), 863–869. doi: http://doi.org/10.1016/j.chom.2020.05.009
  37. Velavan, T. P., Meyer, C. G. (2020). Mild versus severe COVID-19: Laboratory markers. International Journal of Infectious Diseases, 95, 304–307. doi: http://doi.org/10.1016/j.ijid.2020.04.061
  38. Abobaker, A., Raba, A. A., Alzwi, A. (2020). Extrapulmonary and atypical clinical presentations of COVID‐19. Journal of Medical Virology, 92 (11), 2458–2464. doi: http://doi.org/10.1002/jmv.26157
  39. Chen, M., Zhou, W., Xu, W. (2021). Thyroid Function Analysis in 50 Patients with COVID-19: A Retrospective Study. Thyroid, 31 (1), 8–11. doi: http://doi.org/10.1089/thy.2020.0363
  40. Gorini, F., Bianchi, F., Iervasi, G. (2020). COVID-19 and Thyroid: Progress and Prospects. International Journal of Environmental Research and Public Health, 17 (18), 6630. doi: http://doi.org/10.3390/ijerph17186630
  41. Lang, S., Liu, Y., Qu, X., Lu, R., Fu, W., Zhang, W. et. al. (2021). Association between Thyroid Function and Prognosis of COVID-19: A Retrospective Observational Study. Endocrine Research, 46 (4), 170–177. doi: http://doi.org/10.1080/07435800.2021.1924770
  42. Muller, I., Cannavaro, D., Dazzi, D., Covelli, D., Mantovani, G., Muscatello, A. et. al. (2020). SARS-CoV-2-related atypical thyroiditis. The Lancet Diabetes & Endocrinology, 8 (9), 739–741. doi: http://doi.org/10.1016/s2213-8587(20)30266-7
  43. Baldelli, R., Nicastri, E., Petrosillo, N., Marchioni, L., Gubbiotti, A., Sperduti, I. et. al. (2021). Thyroid dysfunction in COVID-19 patients. Journal of Endocrinological Investigation, 44 (12), 2735–2739. doi: http://doi.org/10.1007/s40618-021-01599-0
  44. Stasiak, M., Lewiński, A. (2021). New aspects in the pathogenesis and management of subacute thyroiditis. Reviews in Endocrine and Metabolic Disorders, 22 (4), 1027–1039. doi: http://doi.org/10.1007/s11154-021-09648-y
  45. Mateu-Salat, M., Urgell, E., Chico, A. (2020). SARS-COV-2 as a trigger for autoimmune disease: report of two cases of Graves’ disease after COVID-19. Journal of Endocrinological Investigation, 43 (10), 1527–1528. doi: http://doi.org/10.1007/s40618-020-01366-7
  46. Khatri, A., Charlap, E., Kim, A. (2020). Subacute Thyroiditis from COVID-19 Infection: A Case Report and Review of Literature. European Thyroid Journal, 9 (6), 324–328. doi: http://doi.org/10.1159/000511872
  47. Ruggeri, R. M., Campennì, A., Siracusa, M., Frazzetto, G., Gullo, D. (2020). Subacute thyroiditis in a patient infected with SARS-COV-2: an endocrine complication linked to the COVID-19 pandemic. Hormones, 20 (1), 219–221. doi: http://doi.org/10.1007/s42000-020-00230-w
  48. Whiting, A., Reyes, J. V. M., Ahmad, S., Lieber, J. (2021). Post-COVID-19 Fatigue: A Case of Infectious Hypothyroidism. Cureus, 13 (5). doi: http://doi.org/10.7759/cureus.14815
  49. Inaba, H., Aizawa, T. (2021). Coronavirus Disease 2019 and the Thyroid – Progress and Perspectives. Frontiers in Endocrinology, 12. doi: http://doi.org/10.3389/fendo.2021.708333
  50. Brancatella, A., Ricci, D., Cappellani, D., Viola, N., Sgrò, D., Santini, F., Latrofa, F. (2020). Is Subacute Thyroiditis an Underestimated Manifestation of SARS-CoV-2 Infection? Insights From a Case Series. The Journal of Clinical Endocrinology & Metabolism, 105 (10), e3742–e3746. doi: http://doi.org/10.1210/clinem/dgaa537
  51. Brancatella, A., Ricci, D., Viola, N., Sgrò, D., Santini, F., Latrofa, F. (2020). Subacute Thyroiditis After Sars-COV-2 Infection. The Journal of Clinical Endocrinology & Metabolism, 105 (7), 2367–2370. doi: http://doi.org/10.1210/clinem/dgaa276
  52. Malik, J., Zaidi, S. M. J., Waqar, A. U., Khawaja, H., Malik, A., Ishaq, U. et. al. (2021). Association of hypothyroidism with acute COVID-19: a systematic review. Expert Review of Endocrinology & Metabolism, 16 (5), 251–257. doi: http://doi.org/10.1080/17446651.2021.1968830
  53. Liu, J., Wu, X., Lu, F., Zhao, L., Shi, L., Xu, F. (2016). Low T3 syndrome is a strong predictor of poor outcomes in patients with community-acquired pneumonia. Scientific Reports, 6 (1). doi: http://doi.org/10.1038/srep22271
  54. Güven, M., Gültekin, H. (2021). The prognostic impact of thyroid disorders on the clinical severity of COVID‐19: Results of single‐centre pandemic hospital. International Journal of Clinical Practice, 75 (6). doi: http://doi.org/10.1111/ijcp.14129
  55. Li, X., Marmar, T., Xu, Q., Tu, J., Yin, Y., Tao, Q. et. al. (2020). Predictive indicators of severe COVID-19 independent of comorbidities and advanced age: a nested case-control study. Epidemiology and Infection, 148. doi: http://doi.org/10.1017/s0950268820002502
  56. Fliers, E., Bianco, A. C., Langouche, L., Boelen, A. (2015). Thyroid function in critically ill patients. The Lancet Diabetes & Endocrinology, 3 (10), 816–825. doi: http://doi.org/10.1016/s2213-8587(15)00225-9
  57. Boelaert, K., Visser, W. E., Taylor, P. N., Moran, C., Léger, J., Persani, L. (2020). Endocrinology in the time of COVID-19: Management of hyperthyroidism and hypothyroidism. European Journal of Endocrinology, 183 (1), G33–G39. doi: http://doi.org/10.1530/eje-20-0445
  58. Garg, S., Dabas, A., Singh, H., Goswami, B., Kumar, K., Dubey, A. et. al. (2021). Thyroid dysfunction in COVID-19. Indian Journal of Endocrinology and Metabolism, 25 (3), 198–201. doi: http://doi.org/10.4103/ijem.ijem_195_21
  59. Lania, A., Sandri, M. T., Cellini, M., Mirani, M., Lavezzi, E., Mazziotti, G. (2020). Thyrotoxicosis in patients with COVID-19: the THYRCOV study. European Journal of Endocrinology, 183 (4), 381–387. doi: http://doi.org/10.1530/eje-20-0335
  60. Chen, W., Tian, Y., Li, Z., Zhu, J., Wei, T., Lei, J. (2021). Potential Interaction Between SARS-CoV-2 and Thyroid: A Review. Endocrinology, 162 (3). doi: http://doi.org/10.1210/endocr/bqab004
  61. BTA/SFE statement regarding issues specific to thyroid dysfunction during the COVID-19 pandemic (2021). Available at: https://www.british-thyroid-association.org/sandbox/bta2016/management-of-thyroid-dysfunction-during-covid-19_final.pdf
  62. Damara, F. A., Muchamad, G. R., Ikhsani, R., Hendro, Syafiyah, A. H., Bashari, M. H. (2021). Thyroid disease and hypothyroidism are associated with poor COVID-19 outcomes: A systematic review, meta-analysis, and meta-regression. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 15 (6), 102312. doi: http://doi.org/10.1016/j.dsx.2021.102312
  63. Lui, D., Lee, K. K., Lee, C. H., Lee, A., Hung, I., Tan, K. (2021). Development of Graves' Disease After SARS-CoV-2 mRNA Vaccination: A Case Report and Literature Review. Frontiers in public health, 9, 778964. doi: http://doi.org/10.3389/fpubh.2021.778964
  64. Bornemann, C., Woyk, K., Bouter, C. (2021). Case Report: Two Cases of Subacute Thyroiditis Following SARS-CoV-2 Vaccination. Frontiers in Medicine, 8. doi: http://doi.org/10.3389/fmed.2021.737142
  65. Schimmel, J., Alba, E. L., Chen, A., Russell, M., Srinath, R. (2021). Letter to the Editor: Thyroiditis and Thyrotoxicosis After the SARS-CoV-2 mRNA Vaccine. Thyroid, 31 (9), 1440–1440. doi: http://doi.org/10.1089/thy.2021.0184
  66. Watad, A., Sharif, K., Shoenfeld, Y. (2017). The ASIA syndrome: basic concepts. Mediterranean Journal of Rheumatology, 28 (2), 64–69. doi: http://doi.org/10.31138/mjr.28.2.64
  67. Stasiak, M., Lewiński, A. (2021). New aspects in the pathogenesis and management of subacute thyroiditis. Reviews in Endocrine and Metabolic Disorders, 22 (4), 1027–1039. doi: http://doi.org/10.1007/s11154-021-09648-y
  68. Velavan, T. P., Meyer, C. G. (2020). Mild versus severe COVID-19: Laboratory markers. International Journal of Infectious Diseases, 95, 304–307. doi: http://doi.org/10.1016/j.ijid.2020.04.061
  69. Vera-Lastra, O., Ordinola Navarro, A., Cruz Domiguez, M. P., Medina, G., Sánchez Valadez, T. I., Jara, L. J. (2021). Two Cases of Graves' Disease Following SARS-CoV-2 Vaccination: An Autoimmune/Inflammatory Syndrome Induced by Adjuvants. Thyroid, 31 (9), 1436–1439. doi: http://doi.org/10.1089/thy.2021.0142
  70. González López, J., Martín Niño, I., Arana Molina, C. (2021). Tiroiditis subaguda tras vacunación contra el SARS-CoV-2: a propósito de dos casos. Medicina Clínica. doi: http://doi.org/10.1016/j.medcli.2021.11.002
  71. İremli, B. G., Şendur, S. N., Ünlütürk, U. (2021). Three Cases of Subacute Thyroiditis Following SARS-CoV-2 Vaccine: Postvaccination ASIA Syndrome. The Journal of Clinical Endocrinology & Metabolism, 106 (9), 2600–2605. doi: http://doi.org/10.1210/clinem/dgab373
  72. Şahin Tekin, M., Şaylısoy, S., Yorulmaz, G. (2021). Subacute thyroiditis following COVID-19 vaccination in a 67-year-old male patient: a case report. Human Vaccines & Immunotherapeutics, 17 (11), 4090–4092. doi: http://doi.org/10.1080/21645515.2021.1947102
  73. Dutta, A., Jevalikar, G., Sharma, R., Farooqui, K. J., Mahendru, S., Dewan, A. et. al. (2021). Low FT3 is an independent marker of disease severity in patients hospitalized for COVID-19. Endocrine Connections, 10 (11), 1455–1462. doi: http://doi.org/10.1530/ec-21-0362

Downloads

Published

2022-01-30

How to Cite

Korchagina, D., & Korchagin, I. (2022). COVID-19 and thyroid disease: clinical course and prognosis. ScienceRise: Medical Science, (1 (46), 4–11. https://doi.org/10.15587/2519-4798.2022.252809

Issue

Section

Medical Science