Structural features of multifidus muscle in patients with degenerative diseases of the lumbar spine

Authors

  • Volodymyr Radchenko State Institution "Sytenko Institute of Spine and Joint Pathology of National Academy of Sciences of Ukraine» Pushkinskа str., 80, Kharkiv, Ukraine, 61024, Ukraine
  • Artem Skidanov State Institution "Sytenko Institute of Spine and Joint Pathology of National Academy of Sciences of Ukraine» Pushkinskа str., 80, Kharkiv, Ukraine, 61024, Ukraine https://orcid.org/0000-0002-6954-9080
  • Nataliya Ashukina State Institution "Sytenko Institute of Spine and Joint Pathology of National Academy of Sciences of Ukraine» Pushkinskа str., 80, Kharkiv, Ukraine, 61024, Ukraine https://orcid.org/0000-0002-0478-7440
  • Valentyna Maltseva State Institution "Sytenko Institute of Spine and Joint Pathology of National Academy of Sciences of Ukraine» Pushkinskа str., 80, Kharkiv, Ukraine, 61024, Ukraine https://orcid.org/0000-0002-9184-0536
  • Zinayda Danyshchuk State Institution "Sytenko Institute of Spine and Joint Pathology of National Academy of Sciences of Ukraine» Pushkinskа str., 80, Kharkiv, Ukraine, 61024, Ukraine https://orcid.org/0000-0003-2968-3821

DOI:

https://doi.org/10.15587/2519-4798.2018.142525

Keywords:

degenerative diseases, m. multifidus, histology, electron microscopy, mitochondria, lumbar spine, patients

Abstract

Aim: to investigate the structural and functional changes in paravertebral muscles of patients with degenerative diseases of the lumbar spine based on histological and electron microscopic analyzes.

Material and methods: histological and electron microscopic analysis of multifidus muscles of 49 patients (27 men and 22 women) was performed. Patients were on treatment between September 2015 and March 2018. The material was obtained during surgery for degenerative diseases of the lumbar spine: instability (9 patients), spondylolisthesis (11), spinal stenosis (9), lumbar disc herniation (20).

Results: dystrophic disorders of muscle fibers were detected. There were thickness unevenness, discoid decay, loss of transverse striation and polygonality, replacement of muscle fibers with fat tissue, proliferation of fibrous tissue, edema. Prevalence of adipose tissue was found in 20 % of patients with a lumbar disc herniation, 22.22 % with instability, 36.36 % with spondylolisthesis, 44.44 % with spinal stenosis. The proliferation of connective tissue only in perimysium was defined in patients with a diagnosis "lumbar disc herniation", in others – both in perimysium and in endomysium. At the ultramicroscopic level, in the postoperative material of the patients with spondylolisthesis and spinal stenosis, in addition to intermyofibrillar edema and the violation of the architectonics of sarcomeres, as well as the structure and location of the mitochondria, focal necrosis of myofibrils were detected. Areas with a normal distribution of mitochondria were noted only in a group of patients with a lumbar disc herniation. In patients with a diagnosis of "spinal stenosis" violations of the ultrastructural organization of venules were found. This has a negative effect on nutrition and, accordingly, the functioning of a partitioned muscle.

Conclusion: the greatest manifestations of dystrophic disorders of muscle fibers at the tissue and ultrastructural levels were revealed in patients with diagnoses of "spondylolisthesis" and "spinal stenosis"

Author Biographies

Volodymyr Radchenko, State Institution "Sytenko Institute of Spine and Joint Pathology of National Academy of Sciences of Ukraine» Pushkinskа str., 80, Kharkiv, Ukraine, 61024

MD, Professor, Head of Department

Department of Instrumental and Minimally Invasive Spine Surgery

Artem Skidanov, State Institution "Sytenko Institute of Spine and Joint Pathology of National Academy of Sciences of Ukraine» Pushkinskа str., 80, Kharkiv, Ukraine, 61024

PhD

Department of Instrumental and Minimally Invasive Spine Surgery

Nataliya Ashukina, State Institution "Sytenko Institute of Spine and Joint Pathology of National Academy of Sciences of Ukraine» Pushkinskа str., 80, Kharkiv, Ukraine, 61024

PhD, Head of Laboratory

Head of Laboratory of Connective Tissue Morphology

Valentyna Maltseva, State Institution "Sytenko Institute of Spine and Joint Pathology of National Academy of Sciences of Ukraine» Pushkinskа str., 80, Kharkiv, Ukraine, 61024

Researcher

Laboratory of Connective Tissue Morphology

Zinayda Danyshchuk, State Institution "Sytenko Institute of Spine and Joint Pathology of National Academy of Sciences of Ukraine» Pushkinskа str., 80, Kharkiv, Ukraine, 61024

Researcher

Laboratory of Connective Tissue Morphology

References

  1. Hoy, D., Bain, C., Williams, G., March, L., Brooks, P., Blyth, F. et. al. (2012). A systematic review of the global prevalence of low back pain. Arthritis & Rheumatism, 64 (6), 2028–2037. doi: http://doi.org/10.1002/art.34347
  2. Meucci, R. D., Fassa, A. G., Faria, N. M. X. (2015). Prevalence of chronic low back pain: systematic review. Revista de Saúde Pública, 49. doi: http://doi.org/10.1590/s0034-8910.2015049005874
  3. Da Cruz Fernandes, I. M., Pinto, R. Z., Ferreira, P., Lira, F. S. (2018). Low back pain, obesity, and inflammatory markers: exercise as potential treatment. Journal of Exercise Rehabilitation, 14 (2), 168–174. doi: http://doi.org/10.12965/jer.1836070.035
  4. Crossman, K., Mahon, M., Watson, P. J., Oldham, J. A., Cooper, R. G. (2004). Chronic Low Back Pain-Associated Paraspinal Muscle Dysfunction is not the Result of a Constitutionally Determined “Adverse” Fiber-type Composition. Spine, 29 (6), 628–634. doi: http://doi.org/10.1097/01.brs.0000115133.97216.ec
  5. Radchenko, V. A., Dedukh, N. V., Ashukina, N. A., Skidanov, A. G. (2014). Structural features of paravertebral muscles in normal condition and degenerative diseases of the lumbar spine (literature review). Orthopaedics, Traumatology and Prosthetics, 4, 122–127. doi: http://doi.org/10.15674/0030-598720144122-127
  6. Hultman, G., Nordin, M., Saraste, H., Ohlsen, H. (1993). Body Composition, Endurance, Strength, Cross-sectional Area, and Density of MM Erector Spinae in Men With and Without Low Back Pain. Journal of Spinal Disorders & Techniques, 6 (2), 114–123. doi: http://doi.org/10.1097/00024720-199304000-00004
  7. Cagnie, B., Dhooge, F., Schumacher, C., De Meulemeester, K., Petrovic, M., van Oosterwijck, J., Danneels, L. (2015). Fiber Typing of the Erector Spinae and Multifidus Muscles in Healthy Controls and Back Pain Patients: A Systematic Literature Review. Journal of Manipulative and Physiological Therapeutics, 38 (9), 653–663. doi: http://doi.org/10.1016/j.jmpt.2015.10.004
  8. Käser, L., Mannion, A. F., Rhyner, A., Weber, E., Dvorak, J., Müntener, M. (2001). Active therapy for chronic low back pain: part 2. Effects on paraspinal muscle cross-sectional area, fiber type size, and distribution. Spine, 26 (8), 909–919. doi: http://doi.org/10.1097/00007632-200104150-00014
  9. Mazis, N., Papachristou, D. J., Zouboulis, P., Tyllianakis, M., Scopa, C. D., Megas, P. (2009). The effect of different physical activity levels on muscle fiber size and type distribution of lumbar multifidus. A biopsy study on low back pain patient groups and healthy control subjects. European Journal of Physical and Rehabilitation, 45, 459–467.
  10. Zhao, W.-P., Kawaguchi, Y., Matsui, H., Kanamori, M., Kimura, T. (2000). Histochemistry and Morphology of the Multifidus Muscle in Lumbar Disc Herniation. Spine, 25 (17), 2191–2199. doi: http://doi.org/10.1097/00007632-200009010-00009
  11. Shahidi, B., Parra, C. L., Berry, D. B., Hubbard, J. C., Gombatto, S., Zlomislic, V. et. al. (2017). Contribution of Lumbar Spine Pathology and Age to Paraspinal Muscle Size and Fatty Infiltration. Spine, 42 (8), 616–623. doi: http://doi.org/10.1097/brs.0000000000001848
  12. Radchenko, V. O., Skidanov, A. G., Morozenko, D. V., Zmiyenko, Yu. A., Mischenko, L. P., Nessonova, M. N. (2017). Age related content of different tissues in the lumbar spine paravertebral muscles with degenerative diseases. Orthopaedics, Traumatology and Prosthetics, 1, 80–86. doi: http://doi.org/10.15674/0030-59872017180-86
  13. Ng, J. K.-F., Richardson, C. A., Kippers, V., Parnianpour, M. (1998). Relationship Between Muscle Fiber Composition and Functional Capacity of Back Muscles in Healthy Subjects and Patients With Back Pain. Journal of Orthopaedic & Sports Physical Therapy, 27 (6), 389–402. doi: http://doi.org/10.2519/jospt.1998.27.6.389
  14. Porter, C., Hurren, N. M., Cotter, M. V., Bhattarai, N., Reidy, P. T., Dillon, E. L. et. al. (2015). Mitochondrial respiratory capacity and coupling control decline with age in human skeletal muscle. American Journal of Physiology-Endocrinology and Metabolism, 309 (3), 224–232. doi: http://doi.org/10.1152/ajpendo.00125.2015
  15. Figueiredo, P. A., Mota, M. P., Appell, H. J., Duarte, J. A. (2008). The role of mitochondria in aging of skeletal muscle. Biogerontology, 9 (2), 67–84. doi: http://doi.org/10.1007/s10522-007-9121-7
  16. Demoulin, C., Crielaard, J.-M., Vanderthommen, M. (2007). Spinal muscle evaluation in healthy individuals and low-back-pain patients: a literature review. Joint Bone Spine, 74 (1), 9–13. doi: http://doi.org/10.1016/j.jbspin.2006.02.013
  17. Distefano, G., Standley, R. A., Zhang, X., Carnero, E. A., Yi, F., Cornnell, H. H., Coen, P. M. (2018). Physical activity unveils the relationship between mitochondrial energetics, muscle quality, and physical function in older adults. Journal of Cachexia, Sarcopenia and Muscle, 9 (2), 279–294. doi: http://doi.org/10.1002/jcsm.12272
  18. Eckert, R., Randall, D., Augustine, G. (1991). Animal physiology: Mechanisms and adaptations. Vol. 1. Moscow: Mir, 424.
  19. Korzh, N. A., Prodan, A. I., Barysh, A. E. (2004). Pathogenetic classification of degenerative diseases of the spine. Orthopaedics, Traumatology and Prosthetics, 3, 5–13.
  20. Sarkisov, D. S., Perov Yu. L. (1996). Microcscopic Thecnics. Moscow: Medicicne, 542.
  21. Runion, R. (1982). Handbook on nonparametric statistics: a modern approach. Moscow: Finansy i statistuka, 198.
  22. Sheldon, M. R. (2010). Introductory statistics. Elsevier Academic Press, 841.
  23. Weakley, B. (1975). Electron microscopy for beginners. Moscow: Mir, 328.
  24. Aparicio, S. R., Marsden, P. (1969). A rapid methylene blue-basic fuchsin stain for semi-thin sections of peripheral nerve and other tissues. Journal of Microscopy, 89 (1), 139–141. doi: http://doi.org/10.1111/j.1365-2818.1969.tb00659.x
  25. Reynolds, E. S. (1963). The use of lead citrate at high ph as an electron-opaque stain in electron microscopy. The Journal of Cell Biology, 17 (1), 208–212. doi: http://doi.org/10.1083/jcb.17.1.208
  26. Yoshihara, K., Shirai, Y., Nakayama, Y., Uesaka, S. (2001). Histochemical Changes in the Multifidus Muscle in Patients With Lumbar Intervertebral Disc Herniation. Spine, 26 (6), 622–626. doi: http://doi.org/10.1097/00007632-200103150-00012
  27. Bosma, M. (2016). Lipid droplet dynamics in skeletal muscle. Experimental Cell Research, 340 (2), 180–186. doi: http://doi.org/10.1016/j.yexcr.2015.10.023
  28. Picard, M., White, K., Turnbull, D. M. (2013). Mitochondrial morphology, topology, and membrane interactions in skeletal muscle: a quantitative three-dimensional electron microscopy study. Journal of Applied Physiology, 114 (2), 161–171. doi: http://doi.org/10.1152/japplphysiol.01096.2012
  29. McCarron, J. G., Wilson, C., Sandison, M. E., Olson, M. L., Girkin, J. M., Saunter, C., Chalmers, S. (2013). From Structure to Function: Mitochondrial Morphology, Motion and Shaping in Vascular Smooth Muscle. Journal of Vascular Research, 50 (5), 357–371. doi: http://doi.org/10.1159/000353883
  30. Kawaguchi, Y., Matsui, H., Tsuji, H. (1996). Back muscle injury after posterior lumbar spine surgery. A histologic and enzymatic analysis. Spine, 21 (8), 941–944. doi: http://doi.org/10.1097/00007632-199604150-00007
  31. Leduc-Gaudet, J.-P., Picard, M., Pelletier, F. S.-J., Sgarioto, N., Auger, M.-J., Vallée, J. et. al. (2015). Mitochondrial morphology is altered in atrophied skeletal muscle of aged mice. Oncotarget, 6 (20), 17923–17937. doi: http://doi.org/10.18632/oncotarget.4235
  32. Del Campo, A., Contreras-Hernández, I., Castro-Sepúlveda, M., Campos, C. A., Figueroa, R., Tevy, M. F. et. al. (2018). Muscle function decline and mitochondria changes in middle age precede sarcopenia in mice. Aging, 10 (1), 34–55. doi: http://doi.org/10.18632/aging.101358
  33. Kim, Y., Triolo, M., Hood, D. A. (2017). Impact of Aging and Exercise on Mitochondrial Quality Control in Skeletal Muscle. Oxidative Medicine and Cellular Longevity, 2017, 1–16. doi: http://doi.org/10.1155/2017/3165396
  34. Chen, H., Chan, D. C. (2010). Physiological functions of mitochondrial fusion. Annals of the New York Academy of Sciences, 1201 (1), 21–25. doi: http://doi.org/10.1111/j.1749-6632.2010.05615.x
  35. Ju, J., Jeon, S., Park, J., Lee, J., Lee, S., Cho, K., Jeong, J. (2016). Autophagy plays a role in skeletal muscle mitochondrial biogenesis in an endurance exercise-trained condition. The Journal of Physiological Sciences, 66 (5), 417–430. doi: http://doi.org/10.1007/s12576-016-0440-9
  36. Koltai, E., Hart, N., Taylor, A. W., Goto, S., Ngo, J. K., Davies, K. J. A., Radak, Z. (2012). Age-associated declines in mitochondrial biogenesis and protein quality control factors are minimized by exercise training. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 303 (2), 127–134. doi: http://doi.org/10.1152/ajpregu.00337.2011
  37. Kang, C.-H., Chung, E., Diffee, G., Ji, L. L. (2009). Exercise Training Attenuates Aging-associated Reduction In Mitochondrial Biogenesis In Rat Skeletal Muscle. Medicine & Science in Sports & Exercise, 41, 59. doi: http://doi.org/10.1249/01.mss.0000353449.06824.c0

Published

2018-09-25

How to Cite

Radchenko, V., Skidanov, A., Ashukina, N., Maltseva, V., & Danyshchuk, Z. (2018). Structural features of multifidus muscle in patients with degenerative diseases of the lumbar spine. ScienceRise: Medical Science, (6 (26), 41–49. https://doi.org/10.15587/2519-4798.2018.142525

Issue

Section

Medical Science