DOI: https://doi.org/10.15587/2519-4852.2018.153035

Development and validation of HPLC/UV-procedures of secnidazole determination in blood and urine

Oksana Shovkova, Lina Klimenko, Zoia Shovkova, Olena Mykytenko

Abstract


Aim. The system of HPLC-analyzer MiLiChrome® A-02 is widely used in Ukrainian laboratories of forensic toxicology. The purpose is to apply the HPLC-analyzer system for secnidazole quantitative determination in biological liquids and carry out validation of the developed procedures.

Methods. Sample preparation of blood and urine was carried out in three ways – 1) liquid-liquid extraction with organic solvents immiscible with water, 2) amphiphylic solvents extraction and salting-out with ammonium sulphate, 3) complex application of liquid-liquid extraction with organic solvents immiscible with water and amphiphylic solvents extraction with salting-out. Chromatographic conditions: column – Æ2´75 mm, ProntoSIL 120-5-C18 AQ, 5 μm; temperature – 40°С; flow rate – 100 μl/min; Eluent A – 0.2 M LiClO4 – 0.005 M HClO4; Eluent B – acetonitrile; elution mode – linear gradient; detection – UV, 277 nm; volume of injection – 2 μl.

Results. Validation of all developed procedures has been carried out by such parameters as specificity, recovery, linearity, accuracy and precision in the variant of the method of standard. The results of analysis have shown the absence of peaks with the retention time, which is coincident with the secnidazole retention time, on the chromatograms of blank-samples for all variants of procedures of analyte isolation. All procedures of sample preparation show the high efficiency of secnidazole isolation both for blood and urine (at the level of 90 %). All examined procedures are characterized by the acceptable parameters of linearity, within-run and between-run accuracy and precision.

Conclusions. The set of HPLC-procedures of secnidazole quantitative determination in blood and urine has been developed. Validation of the developed procedures has been carried out; isopropanol application in the acid medium is optimal for biological liquids sample preparation


Keywords


secnidazole; high-performance liquid chromatography; blood; urine; sample preparation; validation; method of standard

Full Text:

PDF

References


Brook, I. (2016). Spectrum and treatment of anaerobic infections. Journal of Infection and Chemotherapy, 22 (1), 1–13. doi: http://doi.org/10.1016/j.jiac.2015.10.010

Upcroft, P., Upcroft, J. A. (2001). Drug Targets and Mechanisms of Resistance in the Anaerobic Protozoa. Clinical Microbiology Reviews, 14 (1), 150–164. doi: http://doi.org/10.1128/cmr.14.1.150-164.2001

Rose, M. D., Bygrave, J., Sharman, M. (1999). Effect of cooking on veterinary drug residues in food Part 9 Nitroimidazoles. The Analyst, 124 (3), 289–294. doi: http://doi.org/10.1039/a809062i

Sobel, R., Sobel, J. D. (2015). Metronidazole for the treatment of vaginal infections. Expert Opinion on Pharmacotherapy, 16 (7), 1109–1115. doi: http://doi.org/10.1517/14656566.2015.1035255

Samuelson, J. (1999). Why Metronidazole Is Active against both Bacteria and Parasites. Antimicrobial Agents and Chemotherapy, 43 (7), 1533–1541. doi: http://doi.org/10.1128/aac.43.7.1533

Freeman, C. D., Klutman, N. E., Lamp, K. C. (1997). Metronidazole. A therapeutic review and update. Drugs, 54, 679–708. doi: http://doi.org/10.2165/00003495-199754050-00003

Commission Regulation (EU) No. 37/2010 of 22 December 2009 on pharmacologically active substances and their classification regarding maximum residue limits in foodstuffs of animal origin (2010). Official Journal of the European Union, L15, 1–72.

Lamp, K. C., Freeman, C. D., Klutman, N. E., Lacy, M. K. (1999). Pharmacokinetics and Pharmacodynamics of the Nitroimidazole Antimicrobials. Clinical Pharmacokinetics, 36 (5), 353–373. doi: http://doi.org/10.2165/00003088-199936050-00004

Gillis, J. C., Wiseman, L. R. (1996). Secnidazole. A review of its antimicrobial activity, pharmacokinetic properties and therapeutic use in the management of protozoal infections and bacterial vaginosis. Drugs, 51 (4), 621–638. doi: http://doi.org/10.2165/00003495-199651040-00007

El Walily, A. F. M., Abdine, H. H., Razak, O. A., Zamel, S. (2000). Spectrophotometric and HPLC determination of secnidazole in pharmaceutical tablets. Journal of Pharmaceutical and Biomedical Analysis, 22 (6), 887–897. doi: http://doi.org/10.1016/s0731-7085(99)00290-3

Sun, H. W., Wang, F. C., Ai, L. F. (2007). Simultaneous determination of seven nitroimidazole residues in meat by using HPLC-UV detection with solid-phase extraction. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 857 (2), 296–300. doi: http://doi.org/10.1016/j.jchromb.2007.07.039

Ravi, S. K., Naidu, M. U. R., Sekhar, E. C., Rao, T. R. K., Shobha, J. C., Rani, P. U., Surya, K. J. (1997). Rapid and selective analysis of secnidazole in human plasma using high-performance liquid chromatography with ultraviolet detection. Journal of Chromatography B: Biomedical Sciences and Applications, 691 (1), 208–211. doi: http://doi.org/10.1016/s0378-4347(96)00419-7

Li, X., Sun, J., Wang, G., Zheng, Y., Yan, B., Xie, H. et. al. (2007). Determination of secnidazole in human plasma by high-performance liquid chromatography with UV detection and its application to the bioequivalence studies. Biomedical Chromatography, 21 (3), 304–309. doi: http://doi.org/10.1002/bmc.758

Zhu, D., Hu, K., Tao, W., Feng, L., Duan, H., Jiang, X., Chen, J. (2011). Evaluation of the Bioequivalence and Pharmacokinetics of Two Formulations of Secnidazole after Single Oral Administration in Healthy Volunteers. Arzneimittelforschung, 57 (11), 723–726. doi: http://doi.org/10.1055/s-0031-1296674

Tenenbaum, H., Cuisinier, F. J. G., Liboux, A., Pichard, E., Montay, G., Frydman, A. (1993). Secnidazole concentrations in plasma and crevicular fluid after a single oral dose. Journal of Clinical Periodontology, 20 (7), 505–508. doi: http://doi.org/10.1111/j.1600-051x.1993.tb00398.x

Mitrowska, K., Antczak, M. (2017). Development and validation of a liquid chromatography with tandem mass spectrometry method for the determination of nitroimidazole residues in beeswax. Journal of Separation Science, 40 (5), 1158–1166. doi: http://doi.org/10.1002/jssc.201600928

Rúbies, A., Sans, G., Kumar, P., Granados, M., Companyó, R., Centrich, F. (2015). High-throughput method for the determination of nitroimidazoles in muscle samples by liquid chromatography coupled to mass spectrometry. Analytical and Bioanalytical Chemistry, 407 (15), 4411–4421. doi: http://doi.org/10.1007/s00216-014-8436-x

Azarova, I. N., Baram, G. I. (2014). Primenenie perhlorata litiya v obraschenno-fazovoy vyisokoeffektivnoy zhidkostnoy hromatografii aminosoedineniy. Sorbtsionnyie i hromatograficheskie protsessyi, 14 (1), 858–867.

Shovkova, O. V., Klimenko, L. Yu., Shovkova, Z. V., Kostina, T. A. (2018). Development and validation of HPLC/UV-procedure of secnidazole determination. Journal of Organic and Pharmaceutical Chemistry, 16 (3 (63)), 30–38. doi: http://doi.org/10.24959/ophcj.18.948

Klimenko, L. Yu. (2016). The integrated approach to development and validation of the procedures of analytes quantification in biological fluids for chemical and toxicological analysis. Kharkiv, 816.

Moffat, A. C., Osselton, M. D., Widdop, B. (2011). Clarke’s analysis of drugs and poisons in pharmaceuticals, body fluids and postmortem material: 4th ed. London: Pharmaceutical Press, 2609.

Klimenko, L. Yu. (2014). Development of approaches to determination of linearity, accuracy and precision of UV-spectrophotometric methods of quantitative determination by the method of standard in forensic and toxicological analysis. Farmatsyia Kazakhstana, 4 (155), 31–35.

Klimenko, L. Yu., Trut, S. M., Poluyan, S. М. (2014). Determination of validation characteristics of UV-spec-trophotometric method of doxylamine quantitative determination in blood in the variant of the method of standard. News of Pharmacy, 2 (78), 53–58. doi: http://doi.org/10.24959/nphj.14.1969


GOST Style Citations


Brook I. Spectrum and treatment of anaerobic infections // Journal of Infection and Chemotherapy. 2016. Vol. 22, Issue 1. P. 1–13. doi: http://doi.org/10.1016/j.jiac.2015.10.010 

Upcroft P., Upcroft J. A. Drug Targets and Mechanisms of Resistance in the Anaerobic Protozoa // Clinical Microbiology Reviews. 2001. Vol. 14, Issue 1. P. 150–164. doi: http://doi.org/10.1128/cmr.14.1.150-164.2001 

Rose M. D., Bygrave J., Sharman M. Effect of cooking on veterinary drug residues in food Part 9 Nitroimidazoles // The Analyst. 1999. Vol. 124, Issue 3. P. 289–294. doi: http://doi.org/10.1039/a809062i 

Sobel R., Sobel J. D. Metronidazole for the treatment of vaginal infections // Expert Opinion on Pharmacotherapy. 2015. Vol. 16, Issue 7. P. 1109–1115. doi: http://doi.org/10.1517/14656566.2015.1035255 

Samuelson J. Why Metronidazole Is Active against both Bacteria and Parasites // Antimicrobial Agents and Chemotherapy. 1999. Vol. 43, Issue 7. P. 1533–1541. doi: http://doi.org/10.1128/aac.43.7.1533 

Freeman C. D., Klutman N. E., Lamp K. C. Metronidazole. A therapeutic review and update // Drugs. 1997. Vol. 54. P. 679–708. doi: http://doi.org/10.2165/00003495-199754050-00003 

Commission Regulation (EU) No. 37/2010 of 22 December 2009 on pharmacologically active substances and their classification regarding maximum residue limits in foodstuffs of animal origin // Official Journal of the European Union. 2010. L15. P. 1–72.

Pharmacokinetics and Pharmacodynamics of the Nitroimidazole Antimicrobials / Lamp K. C. et. al. // Clinical Pharmacokinetics. 1999. Vol. 36, Issue 5. P. 353–373. doi: http://doi.org/10.2165/00003088-199936050-00004 

Gillis J. C., Wiseman L. R. Secnidazole. A review of its antimicrobial activity, pharmacokinetic properties and therapeutic use in the management of protozoal infections and bacterial vaginosis // Drugs. 1996. Vol. 51, Issue 4. P. 621–638. doi: http://doi.org/10.2165/00003495-199651040-00007 

Spectrophotometric and HPLC determination of secnidazole in pharmaceutical tablets / El Walily A. F. M. et. al. // Journal of Pharmaceutical and Biomedical Analysis. 2000. Vol. 22, Issue 6. P. 887–897. doi: http://doi.org/10.1016/s0731-7085(99)00290-3 

Sun H. W., Wang F. C., Ai L. F. Simultaneous determination of seven nitroimidazole residues in meat by using HPLC-UV detection with solid-phase extraction // Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences. 2007. Vol. 857, Issue 2. P. 296–300. doi: http://doi.org/10.1016/j.jchromb.2007.07.039 

Rapid and selective analysis of secnidazole in human plasma using high-performance liquid chromatography with ultraviolet detection / Ravi S. K. et. al. // Journal of Chromatography B: Biomedical Sciences and Applications. 1997. Vol. 691, Issue 1. P. 208–211. doi: http://doi.org/10.1016/s0378-4347(96)00419-7 

Determination of secnidazole in human plasma by high-performance liquid chromatography with UV detection and its application to the bioequivalence studies / Li X. et. al. // Biomedical Chromatography. 2007. Vol. 21, Issue 3. P. 304–309. doi: http://doi.org/10.1002/bmc.758 

Evaluation of the Bioequivalence and Pharmacokinetics of Two Formulations of Secnidazole after Single Oral Administration in Healthy Volunteers / Zhu D. et. al. // Arzneimittelforschung. 2011. Vol. 57, Issue 11. P. 723–726. doi: http://doi.org/10.1055/s-0031-1296674 

Secnidazole concentrations in plasma and crevicular fluid after a single oral dose / Tenenbaum H. et. al. // Journal of Clinical Periodontology. 1993. Vol. 20, Issue 7. P. 505–508. doi: http://doi.org/10.1111/j.1600-051x.1993.tb00398.x 

Mitrowska K., Antczak M. Development and validation of a liquid chromatography with tandem mass spectrometry method for the determination of nitroimidazole residues in beeswax // Journal of Separation Science. 2017. Vol. 40, Issue 5. P. 1158–1166. doi: http://doi.org/10.1002/jssc.201600928 

High-throughput method for the determination of nitroimidazoles in muscle samples by liquid chromatography coupled to mass spectrometry / Rúbies A. et. al. // Analytical and Bioanalytical Chemistry. 2015. Vol. 407, Issue 15. P. 4411–4421. doi: http://doi.org/10.1007/s00216-014-8436-x 

Azarova I. N., Baram G. I. Primenenie perhlorata litiya v obraschenno-fazovoy vyisokoeffektivnoy zhidkostnoy hromatografii aminosoedineniy // Sorbtsionnyie i hromatograficheskie protsessyi. 2014. Vol. 14, Issue 1. P. 858–867.

Development and validation of HPLC/UV-procedure of secnidazole determination / Shovkova O. V. et. al. // Journal of Organic and Pharmaceutical Chemistry. 2018. Vol. 16, Issue 3 (63). P. 30–38. doi: http://doi.org/10.24959/ophcj.18.948 

Klimenko L. Yu. The integrated approach to development and validation of the procedures of analytes quantification in biological fluids for chemical and toxicological analysis: DSc thesis. Kharkiv, 2016. 816 p.

Moffat A. C., Osselton M. D., Widdop B. Clarke’s analysis of drugs and poisons in pharmaceuticals, body fluids and postmortem material: 4th ed. London: Pharmaceutical Press, 2011. 2609 p.

Klimenko L. Yu. Development of approaches to determination of linearity, accuracy and precision of UV-spectrophotometric methods of quantitative determination by the method of standard in forensic and toxicological analysis // Farmatsyia Kazakhstana. 2014. Vol. 4, Issue 155. P. 31–35.

Klimenko L. Yu., Trut S. M., Poluyan S. М. Determination of validation characteristics of UV-spec-trophotometric method of doxylamine quantitative determination in blood in the variant of the method of standard // News of Pharmacy. 2014. Vol. 2, Issue 78. P. 53–58. doi: http://doi.org/10.24959/nphj.14.1969 







Copyright (c) 2018

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN 2519-4852 (Online), ISSN 2519-4844 (Print)