Chromato-mass-spectrometric research in Salvia grandiflora L., Salvia pratensis L. and Salvia verticillata L. aboveground organs

Authors

DOI:

https://doi.org/10.15587/2519-4852.2021.242761

Keywords:

Salvia, leaves, flowers, stems, terpenes, chromato-mass spectrometry

Abstract

The genus Salvia L. has more than 900 species distributed throughout the globe. 21 species are growing in Ukraine. All species of this genus have essential oils. Salvia officinalis and Salvia sclarea have been used in the culture and are widely used in medical practice. The chemical composition of other species of sage and the possibility of their use in pharmaceutical and medical practice are almost not studied. Taking into account the results of chemotaxonomic studies of species of the flora genus of Ukraine, their prevalence and prospects for introduction into the culture, for further studies were selected raw materials of S. grandiflora, S. pratensis and S. verticillata.

The aim. The aim of the study was to conduct a chromato-mass spectrometric study of the aboveground organs of S. grandiflora L., S. pratensis L. and S. verticillata L. to establish the prospects for the use of raw materials of these species in medical and pharmaceutical practice.

Materials and methods. The objects of the study were leaves of S. officinalis, leaves, stems and flowers of S. grandiflora, S. pratensis and S. verticillata, which were harvested on the basis of the botanical garden of Ivan Franko National University of Lviv. The research of volatile substances in the objects of the research was carried out by the method of GC-MS on the basis of the Department of Natural Sciences for Foreign Students and Toxicological Chemistry of Zaporizhia State Medical University.

Results. As a result of the study, 243 substances were found in the objects of the study, of which 149 were identified. 77 substances were found in the leaves of S. officinalis, 80, 26 and 63 substances in the leaves, stems and flowers of S. grandiflora, respectively, in the leaves , stems and flowers of S. pratensis – 28, 30 and 48 substances, respectively, in leaves, stems and flowers of S. verticillata – 39, 22 and 39 substances, respectively. Dominant compounds among substances of terpenoid nature are: cyclofenchene, camphene, 1,8-cineole, α-thujone, β-thujone, camphor borneol, caryophyllene, humulene, viridiflorol, sabinene, pyranone, β-pinene, phytol, kolavenol, β-copaen, loliolide, pseudolimonene and spatulenol. Among the dominant substances, 8 were detected for the first time in these species: cyclofenchene, viridiflorol, sabinene, pyranone, phytol, kolavenol, loliolide and pseudolimonene.

Conclusions. The leaves of S. officinalis, leaves, stems and flowers of S. grandiflora, S. pratensis and S. verticillata of the flora of Ukraine were studied by chromato-mass spectrometric method. As a result of the study, 243 substances were identified, of which 149 were identified. Promising raw materials containing terpene compounds for S. grandiflora there are leaves, and for S. pratensis and S. verticillata – flowers, so they are promising agents for introduction into pharmaceutical practice

Author Biographies

Mykhailo Myha, National University of Pharmacy

Postgraduate Student

Department of Pharmacognosy

Oleh Koshovyi, National University of Pharmacy

Doctor of Pharmaceutical Sciences, Professor, Head of Department

Department of Pharmacognosy

Yevhen Karpun, Zaporizhzhia State Medical University

Assistant

Department of Natural Sciences for Foreign Students and Toxicological Chemistry

Alla Kovaleva, National University of Pharmacy

Doctor of Pharmaceutical Sciences, Professor

Department of Pharmacognosy

Olga Mala, National University of Pharmacy

PhD, Associate Professor

Department of Botany

Volodymyr Parchenko, Zaporizhzhia State Medical University

Doctor of Pharmaceutical Sciences, Professor

Department of Natural Sciences for Foreign Students and Toxicological Chemistry

Oleksandr Panasenko, Zaporizhzhia State Medical University

Doctor of Pharmaceutical Sciences, Head of Department

Department of Natural Sciences for Foreign Students and Toxicological Chemistry

Vera Bunyatyan, I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation

PhD, Associate Professor

Sergiy Kovalenko, V. N. Karazin Kharkiv National University

Doctor of Chemical Sciences, Professor

Department of Organic Chemistry

References

Komarov, V. L. (1954). Shalfei– Salvia. Flora SSSR. Moscow-Leningrad, 21, 244–374.

Komarov, V. L. (1991). Rastitelnye resursy SSSR: TSvetkovye rasteniia, ikh khimicheskii sostav, ispolzovanie. Saint Petersburg: Nauka, 200.

Kamatou, G. P. P., Viljoen, A. M., Steenkamp, P. (2010). Antioxidant, antiinflammatory activities and HPLC analysis of South African Salvia species. Food Chemistry, 119 (2), 684–688. doi: http://doi.org/10.1016/j.foodchem.2009.07.010

Shanaida, M., Hudz, N., Korzeniowska, K., Wieczorek, P. P. (2018). Antioxidant activity of essential oils obtained from aerial part of some Lamiaceae species. International Journal of Green Pharmacy, 12 (3), 200–204.

Eidi, M., Eidi, A., Bahar, M. (2006). Effects of Salvia officinalis L. (sage) leaves on memory retention and its interaction with the cholinergic system in rats. Nutrition, 22 (3), 321–326. doi: http://doi.org/10.1016/j.nut.2005.06.010

Tildesley, N., Kennedy, D., Perry, E., Ballard, C., Wesnes, K., Scholey, A. (2005). Positive modulation of mood and cognitive performance following administration of acute doses of Salvia lavandulaefolia essential oil to healthy young volunteers. Physiology & Behavior, 83 (5), 699–709. doi: http://doi.org/10.1016/j.physbeh.2004.09.010

Mahdizadeh, R., Moein, S., Soltani, N., Malekzadeh, K., Moein, M. (2018). Study of molecular mechanism of Salvia species in prevention of diabetes. International Journal of Pharmaceutical Sciences and Research, 9, 4512–4521. doi: http://doi.org/10.13040/ijpsr.0975-8232.9(11).4512-21

Eidi, M., Eidi, A., Zamanizadeh, H. (2005). Effect of Salvia officinalis L. leaves on serum glucose and insulin in healthy and streptozotocin-induced diabetic rats. Journal of Ethnopharmacology, 100 (3), 310–313. doi: http://doi.org/10.1016/j.jep.2005.03.008

Bjarnason, I., Scarpignato, C., Holmgren, E., Olszewski, M., Rainsford, K. D., Lanas, A. (2018). Mechanisms of Damage to the Gastrointestinal Tract From Nonsteroidal Anti-Inflammatory Drugs. Gastroenterology, 154 (3), 500–514. doi: http://doi.org/10.1053/j.gastro.2017.10.049

Ghorbani, A., Esmaeilizadeh, M. (2017). Pharmacological properties of Salvia officinalis and its components. Journal of Traditional and Complementary Medicine, 7 (4), 433–440. doi: http://doi.org/10.1016/j.jtcme.2016.12.014

Zagayko, A. L., Kolisnyk, T. Y., Chumak, O. I., Ruban, O. A., Koshovyi, O. M. (2018). Evaluation of anti-obesity and lipid-lowering properties of Vaccinium myrtillus leaves powder extract in a hamster model. Journal of Basic and Clinical Physiology and Pharmacology, 29 (6), 697–703. doi: http://doi.org/10.1515/jbcpp-2017-0161

Nizhenkovska, I. V., Tsurkan, O. O., Sedko, K. V. (2014). Shavliia likarska – suchasni aspekty zastosuvannia (Ohliad literatury). Fitoterapiia. Chasopys, 2, 58–61.

Raja, R. R. (2012). Medicinally Potential Plants of Labiatae (Lamiaceae) Family: An Overview. Research Journal of Medicinal Plant, 6 (3), 203–213. doi: http://doi.org/10.3923/rjmp.2012.203.213

Koshovyi, O. N., Vovk, G. V., Akhmedov, E. Yu., Komissarenko, A. N. (2015). The study of the chemical composition and pharmacological activity of Salvia officinalis leaves extracts getting by complex processing. Azerbaijan Pharmaceutical and Pharmacotherapy Journal, 15 (1), 30–34.

Verkhovodova, Yu., Kireyev, I., Koshovyi, O., Myha, M., Osolodchenko, T. (2020). The effect of common sage extracts on the intestinal microbiota in experimental infectious colitis. Georgian Medical News, 4 (301), 165–170.

Nikavar, B., Abolhasani, L., Izadpanah, H. (2008). Alpha-amylase inhibitory activities of six salvia species. Iranian Journal of Pharmaceutical Research, 7, 297–303. doi: http://doi.org/10.22037/IJPR.2010.779

Khan, A., Rehman, N., AlKharfy, K. M., Gilani, A.-H. (2011). Antidiarrheal and antispasmodic activities of Salvia officinalis are mediated through activation of K+ channels. Bangladesh Journal of Pharmacology, 6 (2), 111–116. doi: http://doi.org/10.3329/bjp.v6i2.9156

Hamidpour, M., Hamidpour, R., Hamidpour, S., & Shahlari, M. (2014). Chemistry, Pharmacology, and Medicinal Property of Sage (Salvia) to Prevent and Cure Illnesses such as Obesity, Diabetes, Depression, Dementia, Lupus, Autism, Heart Disease, and Cancer. Journal of Traditional and Complementary Medicine, 4 (2), 82–88. doi: http://doi.org/10.4103/2225-4110.130373

Mashkovskii, M. D. (2010). Lekarstvennye sredstva. Moscow: OOO «Izd-vo Novaia Volna», 1216.

Kovalenko, V. N. (2020). Compendium 2020 – Medicines. Kyiv: MORION, 2700.

Koshovyi, O., Raal, A., Kovaleva, A., Myha, M., Ilina, T., Borodina, N., Komissarenko, A. (2020). The phytochemical and chemotaxonomic study of Salvia spp. growing in Ukraine. Journal of Applied Biology & Biotechnology, 8 (3), 29–36. doi: http://doi.org/10.7324/jabb.2020.80306

Semenchenko, O. M., Tsurkan, O. O., Korablova, O. A., Burmaka, O. V. (2013). Determination of volatile compounds of essential oils of different species of genus of Salvia by chromatography-mass spectrometric method. Farmatsevtychnyi zhurnal, 1, 62–65.

Jasicka-Misiak, I., Poliwoda, A., Petecka, M., Buslovych, O., Shlyapnikov, V. A., Wieczorek, P. P. (2018). Antioxidant Phenolic Compounds in Salvia officinalis L. and Salvia sclarea L. Ecological Chemistry and Engineering S, 25 (1), 133–142. doi: http://doi.org/10.1515/eces-2018-0009

Kharazian, N. (2013). Identification of flavonoids in leaves of seven wild growing Salvia L. (Lamiaceae) species from Iran. Progress in Biological Sciences, 3 (2), 81–98. doi: http://doi.org/10.22059/PBS.2013.35842

Myha, M., Koshovyi, O., Gamulya, O., Ilina, T., Borodina, N., Vlasova, I. (2020). Phytochemical study of Salvia grandiflora and Salvia officinalis leaves for establishing prospects for use in medical and pharmaceutical practice. ScienceRise: Pharmaceutical Science, 1 (23), 23–28. doi: http://doi.org/10.15587/2519-4852.2020.197299

Rami, K., Zheng Guo, L. (2011). Antimicrobial activity of essential oil of Salvia officinalis L. collected in Syria. African Journal of Biotechnology, 10 (42), 8397–8402. doi: http://doi.org/10.5897/ajb10.2615

Khedher, M. R., Khedher, S. B., Chaieb, I., Tounsi, S., Hammami, M. (2017). Chemical composition and biological activities of Salvia officinalis essential oil from Tunisia. EXCLI Journal, 16, 160–173. doi: http://doi.org/10.17179/excli2016-832

Gericke, S., Lübken, T., Wolf, D., Kaiser, M., Hannig, C., Speer, K. (2018). Identification of New Compounds from Sage Flowers (Salvia officinalis L.) as Markers for Quality Control and the Influence of the Manufacturing Technology on the Chemical Composition and Antibacterial Activity of Sage Flower Extracts. Journal of Agricultural and Food Chemistry, 66 (8), 1843–1853. doi: http://doi.org/10.1021/acs.jafc.8b00581

Koshevoi, O. N. (2011). Amino-acid and monosaccharide compositions of Salvia officinalis leaves. Chemistry of Natural Compounds, 47 (3), 492–493. doi: http://doi.org/10.1007/s10600-011-9976-3

Dobrochaeva, D. N., Kotox, M. I., Prokudin, Y. N., Barbarich, A. I. (1999). Opredelitel vysshikh rastenii Ukrainy . Kyiv: Naukova dumka.

Koshevoy, N., Zabolotny, A., Koshevaya, I., Kostenko, E. M., Rozhnova, T. (2019). Research of moisture-meter device for bulk and liquid materials. 29th International Scientific Symposium Metrology and Metrology, MMA. doi: http://doi.org/10.1109/mma.2019.8935983

Korobiichuk, I., Bezvesilna, O., Kachniarz, M., Koshovyj, M., Kvasnikov, V. (2018). Methods and Ways of Piezoelectric Accelerometers Fastening on the Objects of Research. Acta Physica Polonica A, 133 (4), 1112–1115. doi: http://doi.org/10.12693/aphyspola.133.1112

Derzhavna Farmakopeia Ukrainy. Vol. 1. (2015). Kharkiv: Derzhavne pidpryiemstvo «Ukrainskyi naukovyi farmakopeinyi tsentr yakosti likarskykh zasobiv», 1128.

Krivoruchko, E., Markin, A., Samoilova, V. A., Ilina, T., Koshovyi, O. (2018). Research in the chemical composition of the bark of sorbus aucuparia. Ceska a Slovenska Farmacie, 67 (3), 113–115.

Starchenko, G., Hrytsyk, A., Raal, A., Koshovyi, O. (2020). Phytochemical Profile and Pharmacological Activities of Water and Hydroethanolic Dry Extracts of Calluna vulgaris (L.) Hull. Herb. Plants, 9 (6), 751. doi: http://doi.org/10.3390/plants9060751

Shinkovenko, I. L., Kashpur, N. V., Ilyina, T. V., Kovalyova, A. M., Goryacha, O. V. et. al. (2018). The immunomodulatory activity of the extracts and complexes of biologically active compounds of Galium verum L. herb. Ceska a Slovenska Farmacie, 67 (1), 25–29.

Koshovyi, O., Raal, A., Kireyev, I., Tryshchuk, N., Ilina, T., Romanenko, Y. et. al. (2021). Phytochemical and Psychotropic Research of Motherwort (Leonurus cardiaca L.) Modified Dry Extracts. Plants, 10 (2), 230. doi: http://doi.org/10.3390/plants10020230

Klauke, A.-L., Racz, I., Pradier, B., Markert, A., Zimmer, A. M., Gertsch, J., Zimmer, A. (2014). The cannabinoid CB2 receptor-selective phytocannabinoid beta-caryophyllene exerts analgesic effects in mouse models of inflammatory and neuropathic pain. European Neuropsychopharmacology, 24 (4), 608–620. doi: http://doi.org/10.1016/j.euroneuro.2013.10.008

Al Mansouri, S., Ojha, S., Al Maamari, E., Al Ameri, M., Nurulain, S. M., Bahi, A. (2014). The cannabinoid receptor 2 agonist, β-caryophyllene, reduced voluntary alcohol intake and attenuated ethanol-induced place preference and sensitivity in mice. Pharmacology Biochemistry and Behavior, 124, 260–268. doi: http://doi.org/10.1016/j.pbb.2014.06.025

Basha, R. H., Sankaranarayanan, C. (2016). β-Caryophyllene, a natural sesquiterpene lactone attenuates hyperglycemia mediated oxidative and inflammatory stress in experimental diabetic rats. Chemico-Biological Interactions, 245, 50–58. doi: http://doi.org/10.1016/j.cbi.2015.12.019

Quintans-Júnior, L. J., Araújo, A. A. S., Brito, R. G., Santos, P. L., Quintans, J. S. S., Menezes, P. P. et. al. (2016). β-caryophyllene, a dietary cannabinoid, complexed with β-cyclodextrin produced anti-hyperalgesic effect involving the inhibition of Fos expression in superficial dorsal horn. Life Sciences, 149, 34–41. doi: http://doi.org/10.1016/j.lfs.2016.02.049

Islam, M. T., de Alencar, M. V. O. B., da Conceição Machado, K., da Conceição Machado, K., de Carvalho Melo-Cavalcante, A. A., de Sousa, D. P., de Freitas, R. M. (2015). Phytol in a pharma-medico-stance. Chemico-Biological Interactions, 240, 60–73. doi: http://doi.org/10.1016/j.cbi.2015.07.010

Islam, M. T., Ali, E. S., Uddin, S. J., Shaw, S., Islam, M. A., Ahmed, M. I. et. al. (2018). Phytol: A review of biomedical activities. Food and Chemical Toxicology, 121, 82–94. doi: http://doi.org/10.1016/j.fct.2018.08.032

Sundarraj, S., Thangam, R., Sreevani, V., Kaveri, K., Gunasekaran, P., Achiraman, S., Kannan, S. (2012). γ-Sitosterol from Acacia nilotica L. induces G2/M cell cycle arrest and apoptosis through c-Myc suppression in MCF-7 and A549 cells. Journal of Ethnopharmacology, 141 (3), 803–809. doi: http://doi.org/10.1016/j.jep.2012.03.014

Balamurugan, R., Duraipandiyan, V., Ignacimuthu, S. (2011). Antidiabetic activity of γ-sitosterol isolated from Lippia nodiflora L. in streptozotocin induced diabetic rats. European Journal of Pharmacology, 667 (1-3), 410–418. doi: http://doi.org/10.1016/j.ejphar.2011.05.025

Published

2021-10-29

How to Cite

Myha, M., Koshovyi, O., Karpun, Y., Kovaleva, A., Mala, O., Parchenko, V., Panasenko, O., Bunyatyan, V., & Kovalenko, S. (2021). Chromato-mass-spectrometric research in Salvia grandiflora L., Salvia pratensis L. and Salvia verticillata L. aboveground organs. ScienceRise: Pharmaceutical Science, (5(33), 32–40. https://doi.org/10.15587/2519-4852.2021.242761

Issue

Section

Pharmaceutical Science