Antinociceptive effects of Treculia africana decne (african breadfruit) seed lectin in Wistar rats

Authors

DOI:

https://doi.org/10.15587/2519-4852.2022.270312

Keywords:

hemagglutinin, agglutinin, analgesic activity, pain-relieving lectin, inflammation, Moraceae

Abstract

The aim: The use of synthetic compounds to treat many diseases must be strictly controlled due to their potential health hazards. Hence, there is a need to search for natural products to serve as safe alternatives to synthetic products. This study investigated the antinociceptive effects and anti-inflammatory activities of Treculia africana seed lectin.

Materials and methods: Lectins were purified from Treculia africana seeds using ion exchange and size-exclusion chromatography. The antinociceptive activity of the lectin was assessed in Wistar rats using abdominal writhing and paw-licking tests induced by acetic acid and formalin, respectively. Anti-inflammatory activity was assessed using carrageenan-induced paw oedema.

Results: Treculia africana seed lectins at 10 mg/kg (p.o.) produced sedation, reduced ambulation, reduced response to touch, analgesia, and decreased defecation in experimental animals. Administration of Treculia africana seed lectin (1 mg/kg and 10 mg/kg) in experimental animals significantly reduced (P < 0.05) acetic acid-induced muscular writhing in a dose-dependent manner with 23.88 and 36.80 per cent inhibition, respectively. Both early and late phases of formalin-induced nociception were significantly inhibited (P < 0.001) by the lectin at all doses (0.1, 1.0 and 10.0 mg/kg), comparably with the standard drug, diclofenac sodium. At 10 mg/kg, T. africana lectin caused a 69.12 % and 65.55 % reduction in both early and late phases of formalin-induced paw licking. Treculia africana lectin also significantly brought about a reduction (P < 0.05) in inflammation induced by sub-plantar injection of carrageenan as measured by a decrease in paw swollenness.

Conclusion: The study showed that Treculia africana lectin possesses antinociceptive and anti-inflammatory properties and can potentially be employed therapeutics to ameliorate pain and inflammation

Author Biographies

Joseph Obabiolorunkosi Awe, Afe Babalola University

MSc Biochemistry

Department of Chemical Sciences

Olukemi Adetutu Osukoya, Afe Babalola University

PhD Biochemistry

Department of Chemical Sciences

Olusola Bolaji Adewale, Afe Babalola University

PhD Biochemistry

Department of Chemical Sciences

Tajudeen Olabisi Obafemi, Afe Babalola University

PhD Biochemistry

Department of Chemical Sciences

Olakunle Bamikole Afolabi, Afe Babalola University

PhD Biochemistry

Department of Chemical Sciences

Adenike Kuku, Obafemi Awolowo University

PhD Biochemistry

Department of Biochemistry and Molecular Biology

References

  1. Pohleven, J., Brzin, J., Vrabec, L., Leonardi, A., Čokl, A., Štrukelj, B. et al. (2011). Basidiomycete Clitocybe nebularis is rich in lectins with insecticidal activities. Applied Microbiology and Biotechnology, 91 (4), 1141–1148. doi: https://doi.org/10.1007/s00253-011-3236-0
  2. Kehinde, A. A., Oludele, O. O., Adenike, K., Mosudi, B. S. (2016). Anti-insect potential of a lectin from the tuber, Dioscorea mangenotiana towards Eldana saccharina (Lepidoptera: Pyralidae). Journal of Agricultural Biotechnology and Sustainable Development, 8 (3), 16–26. doi: https://doi.org/10.5897/jabsd2015.0249
  3. Campos, J. K. L., Araújo, C. S. F., Araújo, T. F. S., Santos, A. F. S., Teixeira, J. A., Lima, V. L. M., Coelho, L. C. B. B. (2016). Anti-inflammatory and antinociceptive activities of Bauhinia monandra leaf lectin. Biochimie Open, 2, 62–68. doi: https://doi.org/10.1016/j.biopen.2016.03.001
  4. Gondim, A. C. S., Roberta da Silva, S., Mathys, L., Noppen, S., Liekens, S., Holanda Sampaio, A. et al. (2019). Potent antiviral activity of carbohydrate-specific algal and leguminous lectins from the Brazilian biodiversity. MedChemComm, 10 (3), 390–398. doi: https://doi.org/10.1039/c8md00508g
  5. Liao, W.-R., Lin, J.-Y., Shieh, W.-Y., Jeng, W.-L., Huang, R. (2003). Antibiotic activity of lectins from marine algae against marine vibrios. Journal of Industrial Microbiology and Biotechnology, 30 (7), 433–439. doi: https://doi.org/10.1007/s10295-003-0068-7
  6. Gautam, A. K., Gupta, N., Narvekar, D. T., Bhadkariya, R., Bhagyawant, S. S. (2018). Characterization of chickpea (Cicer arietinum L.) lectin for biological activity. Physiology and Molecular Biology of Plants, 24 (3), 389–397. doi: https://doi.org/10.1007/s12298-018-0508-5
  7. de Medeiros, M. L. S., de Moura, M. C., Napoleão, T. H., Paiva, P. M. G., Coelho, L. C. B. B., Bezerra, A. C. D. S., da Silva, M. D. C. (2018). Nematicidal activity of a water soluble lectin from seeds of Moringa oleifera. International Journal of Biological Macromolecules, 108, 782–789. doi: https://doi.org/10.1016/j.ijbiomac.2017.10.167
  8. Batista, K. L. R., Silva, C. R., Santos, V. F., Silva, R. C., Roma, R. R., Santos, A. L. E. et al. (2018). Structural analysis and anthelmintic activity of Canavalia brasiliensis lectin reveal molecular correlation between the carbohydrate recognition domain and glycans of Haemonchus contortus. Molecular and Biochemical Parasitology, 225, 67–72. doi: https://doi.org/10.1016/j.molbiopara.2018.09.002
  9. Singh, R. S., Walia, A. K., Kennedy, J. F. (2019). Purification and characterization of a heterodimeric mycelial lectin from Penicillium proteolyticum with potent mitogenic activity. International Journal of Biological Macromolecules, 128, 124–131. doi: https://doi.org/10.1016/j.ijbiomac.2019.01.103
  10. Coelho, L. C. B. B., Silva, P. M. dos S., Lima, V. L. de M., Pontual, E. V., Paiva, P. M. G. et al. (2017). Lectins, Interconnecting Proteins with Biotechnological/Pharmacological and Therapeutic Applications. Evidence-Based Complementary and Alternative Medicine, 2017, 1–22. doi: https://doi.org/10.1155/2017/1594074
  11. White, F. A., Bhangoo, S. K., Miller, R. J. (2005). Chemokines: Integrators of Pain and Inflammation. Nature Reviews Drug Discovery, 4 (10), 834–844. doi: https://doi.org/10.1038/nrd1852
  12. Omoigui, S. (2007). The biochemical origin of pain: The origin of all pain is inflammation and the inflammatory response. Part 2 of 3 – Inflammatory profile of pain syndromes. Medical Hypotheses, 69 (6), 1169–1178. doi: https://doi.org/10.1016/j.mehy.2007.06.033
  13. Abdulkhaleq, L. A., Assi, M. A., Abdullah, R., Zamri-Saad, M., Taufiq-Yap, Y. H., Hezmee, M. N. M. (2018). The crucial roles of inflammatory mediators in inflammation: A review. Veterinary World, 11 (5), 627–635. doi: https://doi.org/10.14202/vetworld.2018.627-635
  14. Santos, A. L. E., Júnior, C. P. S., Neto, R. N. M., Santos, Maria. H. C., Santos, V. F., Rocha, B. A. M. et al. (2020). Machaerium acutifolium lectin inhibits inflammatory responses through cytokine modulation. Process Biochemistry, 97, 149–157. doi: https://doi.org/10.1016/j.procbio.2020.06.012
  15. Zhu, F., Du, B., Xu, B. (2017). Anti-inflammatory effects of phytochemicals from fruits, vegetables, and food legumes: A review. Critical Reviews in Food Science and Nutrition, 58 (8), 1260–1270. doi: https://doi.org/10.1080/10408398.2016.1251390
  16. Osukoya, O., Nwoye-Ossy, M., Olayide, I., Ojo, O., Adewale, O., Kuku, A. (2020). Antioxidant activities of peptide hydrolysates obtained from the seeds ofTreculia africanaDecne (African breadfruit). Preparative Biochemistry & Biotechnology, 50 (5), 504–510. doi: https://doi.org/10.1080/10826068.2019.1709980
  17. Adeniran, O. A., Kuku, A., Obuotor, M. E., Agboola, F. K., Famurewa, A. J., Osasan, S. (2009). Purification, characterization and toxicity of a mannose-binding lectin from the seeds ofTreculia africanaplant. Toxicological & Environmental Chemistry, 91 (7), 1361–1374. doi: https://doi.org/10.1080/02772240902732357
  18. Ajayi, O. S., Aderogba, M. A., Obuotor, E. M., Majinda, R. R. T. (2017). Antioxidant activities of the extracts and isolated compounds from Treculia africana (Decne) leaf. Nigerian Journal of Natural Products and Medicine, 21, 32–38.
  19. Chukwuma, P. C., Nwabueze, T. U., Ogbonnaya, M., Onumadu, K. S., Irondi, A. E. (2018). Effect of traditional processing methods on the proximate composition and carbohydrate components of African breadfruits (Treculia africana) seeds. Research Journal of Food Science and Quality Control, 4 (2), 1–8.
  20. Adeniran, O. A. (2015). Purification and Physicochemical Characterization of Lectin from the Seeds of Treculia Africana Decne. Ile-Ife.
  21. Shimokawa, M., Nsimba-Lubaki, S. M., Hayashi, N., Minami, Y., Yagi, F., Hiemori, K. et al. (2014). Two jacalin-related lectins from seeds of the African breadfruit (Treculia africana L.). Bioscience, Biotechnology, and Biochemistry, 78 (12), 2036–2044. doi: https://doi.org/10.1080/09168451.2014.948376
  22. Aderibigbe, A., Agboola, O. (2010). Studies of behavioural and analgesic properties of Treculia africana in mice. International Journal of Biological and Chemical Sciences, 4 (2), 338–346. doi: https://doi.org/10.4314/ijbcs.v4i2.58120
  23. Olson, B. J. S. C., Markwell, J. (2007). Assays for Determination of Protein Concentration. Current Protocols in Protein Science, 48 (1). doi: https://doi.org/10.1002/0471140864.ps0304s48
  24. Fonsêca, D. V., Salgado, P. R. R., de Carvalho, F. L., Salvadori, M. G. S. S., Penha, A. R. S., Leite, F. C. et al. (2015). Nerolidol exhibits antinociceptive and anti-inflammatory activity: involvement of the GABAergic system and proinflammatory cytokines. Fundamental & Clinical Pharmacology, 30 (1), 14–22. doi: https://doi.org/10.1111/fcp.12166
  25. Ajayi, A. M., Badaki, V. B., Ariyo, O. O., Ben-Azu, B., Asejeje, F. O., Adedapo, A. D. A. (2020). Chrysophyllum albidum fruit peel attenuates nociceptive pain and inflammatory response in rodents by inhibition of pro-inflammatory cytokines and COX-2 expression through suppression of NF-κB activation. Nutrition Research, 77, 73–84. doi: https://doi.org/10.1016/j.nutres.2020.03.004
  26. Hunskaar, S., Hole, K. (1987). The formalin test in mice: dissociation between inflammatory and non-inflammatory pain. Pain, 30 (1), 103–114. doi: https://doi.org/10.1016/0304-3959(87)90088-1
  27. Oladokun, B. O., Omisore, O. N., Osukoya, O. A., Kuku, A. (2019). Anti-nociceptive and anti-inflammatory activities of Tetracarpidium conophorum seed lectin. Scientific African, 3, e00073. doi: https://doi.org/10.1016/j.sciaf.2019.e00073
  28. Robertson, S. A. (2002). What is pain? Journal of the American Veterinary Medical Association, 221 (2), 202–205. doi: https://doi.org/10.2460/javma.2002.221.202
  29. Wirth, J. H., Hudgins, J. C., Paice, J. A. (2005). Use of Herbal Therapies to Relieve Pain: A Review of Efficacy and Adverse Effects. Pain Management Nursing, 6 (4), 145–167. doi: https://doi.org/10.1016/j.pmn.2005.08.003
  30. Wu, M., Cai, J., Yu, Y., Hu, S., Wang, Y., Wu, M. (2021). Therapeutic Agents for the Treatment of Temporomandibular Joint Disorders: Progress and Perspective. Frontiers in Pharmacology, 11. doi: https://doi.org/10.3389/fphar.2020.596099
  31. Ramos, D. de B. M., Araújo, M. T. de M. F., Araújo, T. C. de L., Silva, Y. A., dos Santos, A. C. L. A., e Silva, M. G. et al. (2020). Antinociceptive activity of Schinus terebinthifolia leaf lectin (SteLL) in sarcoma 180-bearing mice. Journal of Ethnopharmacology, 259, 112952. doi: https://doi.org/10.1016/j.jep.2020.112952
  32. Yaksh, T. L., Woller, S. A., Ramachandran, R., Sorkin, L. S. (2015). The search for novel analgesics: targets and mechanisms. F1000Prime Reports, 7. doi: https://doi.org/10.12703/p7-56
  33. Aoki, M., Tsuji, M., Takeda, H., Harada, Y., Nohara, J., Matsumiya, T., Chiba, H. (2006). Antidepressants enhance the antinociceptive effects of carbamazepine in the acetic acid-induced writhing test in mice. European Journal of Pharmacology, 550 (1-3), 78–83. doi: https://doi.org/10.1016/j.ejphar.2006.08.049
  34. Dannerman, P. J. K. D., Sally, K., Wixson, B., White, W. J., John, G. (Eds.) (1977). Monitoring of Analgesia en. Anesthesia and Analgesia in Laboratory Animals, 83–99.
  35. Liu, Z., Gao, W., Zhang, J., Hu, J. (2012). Antinociceptive and smooth muscle relaxant activity of Croton tiglium L seed: an in-vitro and in-vivo study. Iranian Journal of Pharmaceutical Research, 11 (2), 611–620.
  36. Bari, A. U., Santiago, M. Q., Osterne, V. J. S., Pinto-Junior, V. R., Pereira, L. P., Silva-Filho, J. C. et al. (2016). Lectins from Parkia biglobosa and Parkia platycephala: A comparative study of structure and biological effects. International Journal of Biological Macromolecules, 92, 194–201. doi: https://doi.org/10.1016/j.ijbiomac.2016.07.032
  37. Holanda, F., Coelho-de-Sousa, A., Assreuy, A., Leal-Cardoso, J., Pires, A., do Nascimento, K., Teixeira, C. et al. (2009). Antinociceptive Activity of Lectins from Diocleinae Seeds on Acetic Acid-Induced Writhing Test in Mice. Protein & Peptide Letters, 16 (9), 1088–1092. doi: https://doi.org/10.2174/092986609789055304
  38. Shamsi Meymandi, M., Keyhanfar, F. (2013). Assessment of the antinociceptive effects of pregabalin alone or in combination with morphine during acetic acid-induced writhing in mice. Pharmacology Biochemistry and Behavior, 110, 249–254. doi: https://doi.org/10.1016/j.pbb.2013.07.021
  39. McNamara, C. R., Mandel-Brehm, J., Bautista, D. M., Siemens, J., Deranian, K. L., Zhao, M. et al. (2007). TRPA1 mediates formalin-induced pain. Proceedings of the National Academy of Sciences, 104 (33), 13525–13530. doi: https://doi.org/10.1073/pnas.0705924104
  40. Park, S.-H., Sim, Y.-B., Lee, J.-K., Kim, S.-M., Kang, Y.-J., Jung, J.-S., Suh, H.-W. (2011). The analgesic effects and mechanisms of orally administered eugenol. Archives of Pharmacal Research, 34 (3), 501–507. doi: https://doi.org/10.1007/s12272-011-0320-z
  41. Leite, J. F. M., Assreuy, A. M. S., Mota, M. R. L., Bringel, P. H. de S. F., e Lacerda, R. R., Gomes, V. de M. et al. (2012). Antinociceptive and Anti-inflammatory Effects of a Lectin-Like Substance from Clitoria fairchildiana R. Howard Seeds. Molecules, 17 (3), 3277–3290. doi: https://doi.org/10.3390/molecules17033277
  42. Fontenelle, T. P. C., Lima, G. C., Mesquita, J. X., Lopes, J. L. de S., de Brito, T. V., Vieira Júnior, F. das C. et al. (2018). Lectin obtained from the red seaweed Bryothamnion triquetrum: Secondary structure and anti-inflammatory activity in mice. International Journal of Biological Macromolecules, 112, 1122–1130. doi: https://doi.org/10.1016/j.ijbiomac.2018.02.058

Downloads

Published

2022-12-30

How to Cite

Awe, J. O., Osukoya, O. A., Adewale, O. B., Obafemi, T. O., Afolabi, O. B., & Kuku, A. (2022). Antinociceptive effects of Treculia africana decne (african breadfruit) seed lectin in Wistar rats. ScienceRise: Pharmaceutical Science, (6(40), 43–50. https://doi.org/10.15587/2519-4852.2022.270312

Issue

Section

Pharmaceutical Science