Synthesis of potential antiexudative preparations for 2-((4-amino-5-(furan-2-il)-1,2,4-triazole-(4H)-3-yl)-sulfanyl)-N-acetamide series

Authors

  • Natalia Chalenko Kharkiv National Medical University Nauky ave., 4, Kharkiv, Ukraine, 61022, Ukraine https://orcid.org/0000-0002-6087-2201
  • Anatoly Demchenko Institute of Pharmacology and Toxicology of the Academy of Medical Sciences of Ukraine Antona Tsedyka str., 14, Kyiv, Ukraine, 03057, Ukraine
  • Ganna Syrova Kharkiv National Medical University Nauky ave., 4, Kharkiv, Ukraine, 61022, Ukraine https://orcid.org/0000-0001-8849-9755

DOI:

https://doi.org/10.15587/2519-4852.2019.171878

Keywords:

synthesis, 4-amino-3-thio-5-(furan-2-yl)-1, 2, 4-triazole, acetamides, alkylation, antiexudative activity, formalin edema

Abstract

Aim. Conduct the purposeful synthesis of new potential biologically active substances of derivatives of 2 - ((4-amino-5- (furan-2-yl) -1,2,4-triazol (4H) -3-yl) -sulfanyl) -N-acetamides and evaluate their anti-exudative activity on the model of formalin edema in rats.

Materials and methods. In this work, standard methods of organic synthesis, physical and chemical methods of proofing the structure of synthesized compounds, elemental analysis, 1H NMR spectroscopy, chromatographic mass spectrometry, and antiexudative activity were studied on the model of formalin edema in rats using a digital plethysmometer.

Results. By alkylation of 2-((4-amino-5-(furan-2-yl))-4H-1,2,4-triazole-3-thione with N-aryl-substituted α-chloroacetamides in ethanol in an alkaline medium, (4-amino-5-(furan-2-yl)-1,2,4-triazole(4H)-3-yl)-sulfanyl)-N-acetamide. After crystallization we obtained white or light yellow crystalline substances with clear melting temperatures. On the model of formalin edema in rats, the antiexudative activity of the newly synthesized 2-((4-amino-5-(furan-2-yl)-1,2,4-triazole (4H) -3-yl) -sulfanil)-N-acetamides was studied. According to the results of the research, a dependence between "chemical structure – antiexudative activity" of the first synthesized compounds was established. The results of experimental studies showed that fifteen out of twenty one compounds showed anti-exudative activity, eight of which exceeded this activity or were at the reference level of sodium diclofenac.

Conclusions. Synthesis of twenty one compounds of 2-((4-amino-5- (furan-2-yl)-1,2,4-triazole(4H)-3-yl)-sulfanyl)-N-acetamide derivatives was carried out and an evaluation of antiexudative activity, the dependence "chemical structure - antiexudative activity" was established. Leading compounds for antiexudative activity were found

Author Biographies

Natalia Chalenko, Kharkiv National Medical University Nauky ave., 4, Kharkiv, Ukraine, 61022

Assistant

Department of Medical and Bioorganic Chemistry

Anatoly Demchenko, Institute of Pharmacology and Toxicology of the Academy of Medical Sciences of Ukraine Antona Tsedyka str., 14, Kyiv, Ukraine, 03057

Doctor of Pharmacy, Professor, Head of Department

Department of Medical Chemistry

Ganna Syrova, Kharkiv National Medical University Nauky ave., 4, Kharkiv, Ukraine, 61022

Doctor of Pharmacy, Professor, Head of Department

Department of Medical and Bioorganic Chemistry

References

  1. Ignatov, Iu. D., Kukes, V. G., Mazurov, V. I. (2010). Klinicheskaia farmakologiia nesteroidnykh protivovospalitelnykh sredstv. Moscow: GEOTAR, 258.
  2. Karateev, A. E. (2012). Primenenie NPVP: skhematicheskii podkhod. Russkii meditsinskii zhurnal, 25, 1558.
  3. Demetskaia, A. (2017). Nezhelatelnye lekarstvennye reaktsii: NPVP. Farmatsevt praktik, 2, 28–29.
  4. Küçükgüzel, Ş. G., Çıkla-Süzgün, P. (2015). Recent advances bioactive 1,2,4-triazole-3-thiones. European Journal of Medicinal Chemistry, 97, 830–870. doi: http://doi.org/10.1016/j.ejmech.2014.11.033
  5. Ferreira, V. F., da Rocha, D. R., da Silva, F. C., Ferreira, P. G., Boechat, N. A., Magalhães, J. L. (2013). Novel 1H-1,2,3-, 2H-1,2,3-, 1H-1,2,4- and 4H-1,2,4-triazole derivatives: a patent review (2008 – 2011). Expert Opinion on Therapeutic Patents, 23 (3), 319–331. doi: http://doi.org/10.1517/13543776.2013.749862
  6. Kharb, R., Sharma, P. C., Yar, M. S. (2010). Pharmacological significance of triazole scaffold. Journal of Enzyme Inhibition and Medicinal Chemistry, 26 (1), 1–21. doi: http://doi.org/10.3109/14756360903524304
  7. Tariq, S., Kamboj, P., Alam, O., Amir, M. (2018). 1,2,4-Triazole-based benzothiazole/benzoxazole derivatives: Design, synthesis, p38α MAP kinase inhibition, anti-inflammatory activity and molecular docking studies. Bioorganic Chemistry, 81, 630–641. doi: http://doi.org/10.1016/j.bioorg.2018.09.015
  8. Mousa, T. H., Elia, A. N. (2015). Design, synthesis and preliminary pharmacological evaluation of new possible non-steroidal anti-inflammatory agents having the 5-(methylsulfonyl)-1,2,4-triazole-3-amine pharmacophore. Der Pharma Chemica, 7 (9), 279–293.
  9. Shepeta, Y. L., Lelyukh, M. I., Zimenkovsky, B. S., Lesyk, R. B. (2016). Synthesis of novel 4H-1,2,4-triazole-3-thiol derivatives with 2-(2,6-dichlorophenylamino)benzyl fragment in molecules and their anti-inflammatory activity. Current Issues in Pharmacy and Medicine: Science and Practice, 1 (20), 18–25. doi: http://doi.org/10.14739/2409-2932.2016.1.61103
  10. Coşkun, G., Djikic, T., Hayal, T., Türkel, N., Yelekçi, K., Şahin, F., Küçükgüzel, Ş. (2018). Synthesis, Molecular Docking and Anticancer Activity of Diflunisal Derivatives as Cyclooxygenase Enzyme Inhibitors. Molecules, 23 (8), 1969. doi: http://doi.org/10.3390/molecules23081969
  11. Navidpour, L., Shafaroodi, H., Abdi, K., Amini, M., Ghahremani, M. H., Dehpour, A. R., Shafiee, A. (2006). Design, synthesis, and biological evaluation of substituted 3-alkylthio-4,5-diaryl-4H-1,2,4-triazoles as selective COX-2 inhibitors. Bioorganic & Medicinal Chemistry, 14 (8), 2507–2517. doi: http://doi.org/10.1016/j.bmc.2005.11.029
  12. Cai, H., Huang, X., Xu, S., Shen, H., Zhang, P., Huang, Y. et. al. (2016). Discovery of novel hybrids of diaryl-1,2,4-triazoles and caffeic acid as dual inhibitors of cyclooxygenase-2 and 5-lipoxygenase for cancer therapy. European Journal of Medicinal Chemistry, 108, 89–103. doi: http://doi.org/10.1016/j.ejmech.2015.11.013
  13. Jiang, B., Huang, X., Yao, H., Jiang, J., Wu, X., Jiang, S. et. al. (2014). Discovery of potential anti-inflammatory drugs: diaryl-1,2,4-triazoles bearing N-hydroxyurea moiety as dual inhibitors of cyclooxygenase-2 and 5-lipoxygenase. Organic & Biomolecular Chemistry, 12 (13), 2114–2127. doi: http://doi.org/10.1039/c3ob41936c
  14. Syrovaya, A. O., Chalenko, N. N., Demchenko, A. M. (2016). The Synthesis of potential anti-inflammatory substances among 4-amino-5-(pyridin-4-yl)-1,2,4-triazole(4H)-3-yl-thioacetamides and their chemical modification. Der Pharma Chemica, 8 (21), 17–21.
  15. Syrovaya, A., Chalenko, N., Bezuglyi, P., Demchenko, A. (2017). The synthesis of 4-amino -5-(pyridin-2(3)-Yl) -1,2,4-triazole (4H)-3-ylthio acetamide derivatives as potential anti-inflammatory substances. ScienceRise: Pharmaceutical Science, 1 (5), 40–44. doi: http://doi.org/10.15587/2519-4852.2017.93332
  16. Parchenko, V. V., Yerokhin, V. Ye., Panasenko, O. I., Knysh, Ye. H. (2010). Syntez, peretvorennia, fizyko-khimichni vlastyvosti 4-alkil-, aryl-ta 4-aminopokhidnykh 1,2,4-triazol-3-tioliv iz zalyshkamy frahmentiv furanu. Zaporozhskyi medytsynskyi zhurnal, 12 (4), 83–87.
  17. Xu, S., Rouzer, C. A., Marnett, L. J. (2014). Oxicams, a class of nonsteroidal anti-inflammatory drugs and beyond. IUBMB Life, 66 (12), 803–811. doi: http://doi.org/10.1002/iub.1334
  18. Rani, P., Pal, D., Hegde, R. R., Hashim, S. R. (2014). Anticancer, Anti-Inflammatory, and Analgesic Activities of Synthesized 2-(Substituted phenoxy) Acetamide Derivatives. BioMed Research International, 2014, 1–9. doi: http://doi.org/10.1155/2014/386473
  19. Saidov, N. B., Kadamov, I. M., Georgiyants, V. A., Taran, A. V. (2014). Planning, Synthesis, and Pharmacological Activity of Alkyl Derivatives of 3-Mercapto-4-Phenyl-5-Arylaminomethyl-1,2,4-Triazole-(4H). Pharmaceutical Chemistry Journal, 47 (11), 581–585. doi: http://doi.org/10.1007/s11094-014-1011-0
  20. Way2Drug – main. (Prediction of Activity Spectra for Substances) PASS. Available at: http://www.way2drug.com/PASSonline/
  21. Nadkarni, B., Kamat, V., Khadse, B. (2011). Synthesis and Anthelmintic Activity of 3,6-Disubstituted-7H-s-triazolo(3,4-b) (1,3,4) thiadiazines. Arzneimittelforschung, 51 (7), 569–573. doi: http://doi.org/10.1055/s-0031-1300081
  22. Drohovoz, S. M., Zupanets, I. A., Mokhort, M. A. (2001). Eksperymentalne (doklinichne) vyvchennia farmakolohichnykh rechovyn, yaki proponuiutsia yak nesteroidni protyzapalni zasoby. Doklinichni doslidzhennia likarskykh zasobiv. Kyiv: Avitsenna, 242–306.
  23. Rybolovlev, Iu. R., Rybolovlev, R. S. (1979). Dozirovanie veshchestv dlia mlekopitaiushchikh po konstantam biologicheskoi aktivnosti. Doklady AN SSSR, 6, 1513–1516
  24. Stefanov, O. V. (Ed.) (2001). Doklinichni doslidzhennia likarskykh zasobiv. Kyiv: Avitsenna, 527.

Downloads

Published

2019-07-18

How to Cite

Chalenko, N., Demchenko, A., & Syrova, G. (2019). Synthesis of potential antiexudative preparations for 2-((4-amino-5-(furan-2-il)-1,2,4-triazole-(4H)-3-yl)-sulfanyl)-N-acetamide series. ScienceRise: Pharmaceutical Science, (3 (19), 22–29. https://doi.org/10.15587/2519-4852.2019.171878

Issue

Section

Pharmaceutical Science