RESEARCH OF N,N-DIALLYL (3-ARYLISOXASOL-5-YL)-METHYLENESULFONYLAMIDES AS ADDITIVES FOR INCREASING THE LOAD CARRYING CAPACITY OF SYNTETIC OIL BASED ON THE PENTAERYTHRITOL ESTER AND BUTYRIC ACID

Ob’єктом дослідження є N,N-діаліл-(3-арилізооксазол-5-іл)-метиленсульфоніламіди (Ar: C_6H_5 (1); C_6H_4–4–CH_3 (2); C_6H_4–4–OC_2H_5 (3)) в якості протизношувальних присадок до олив, які одержано з відповідних сульфонілхлоридів та діаліламіну. Як еталон за дією використано промислову присадку ДФ-11 (діалілдитіофосфат цинку) (4), а еталон за будовою – аліловий естер 2-меркаптобензтіазолу (5). Як синтетичну оливу використано естер пентаеритриту та н-масляної кислоти, який одержано реакцією естерифікації.

Досліджено деякі фізичні характеристики (відносну в’язкість та показник заломлення) одержаної оливи при додаванні сульфоніламідів (1)–(3) та без них.

Вплив додавання N,N-діаліл-(3-арилізооксазол-5-іл)-метиленсульфоніламідів (Ар: C_6H_5 (1); C_6H_4–4–CH_3 (2); C_6H_4–4–OC_2H_5 (3)) на динамічну міцність досліджуваної оливи оцінювали за методикою ASTM D2783 (ГОСТ 9490-75) на чотирикульковій машині тертя за показником критичного навантаження. Випробування проводили при тертя відповідних рідин стандартних металевих кульок, що виготовлені зі сталі ШХ15 (мікротвердість – 64–66 HRC, параметр жорсткості – Ra < 0,25 мкм). Частота обертання верхньої навантаженої кульки відносно трьох нерухомих кульок – 1500 хв–1, температура оливи – 20 °С. Час випробування при кожному навантаженні – 10 с, повторюваність експерименту – три випробування для кожного навантаження.

Дослідження зміни діаметру плями зношення D з металевих кульок при тертя в вихідній оливі без додавання сполуки (3) та відповідно з додаванням здійснено при оберті 1500 хв–1, початковій температурі 25 °С, часу дослідження – 1 година. Одержані результати свідчать, що D з оливи без внесення зазначеної сполуки склав 0,75 мм, а при її внесені (0,1 мас. %) – 0,67 мм, тобто, зниження зношування складає 10,67 %.

Знайдено, що присутність досліджуваних присадок (1)–(3) у малих концентраціях у синтетичній оливі на основі естери пентаеритриту та синтетичних жирних кислот може суттєво підвищувати її несучу здатність. Наїбільш ефективною є сполука (3), яка в концентрації 0,1 % мас. перевищує несучу здатність, порівняно з (4), у 1,38 рази, а з (5) – у 1,37 рази. Зазначена сполука є більш ефективною у концентрації, що в 10–20 разів менше, порівняно з відомими присадками.

Таким чином, застосування N,N-діаліл-(3-арилізооксазол-5-іл)-метиленсульфоніламідів, як присадок для підвищення несучої здатності синтетичних олив на основі естера пентаеритриту та синтетичних жирних кислот, дозволяє підвищити протизношувальну активність масляних матеріалів. Тому вони можуть бути використані для створення нових ефективних композицій до олив і нафтопродуктів.

Ключові слова: N,N-діаліл-(3-арилізооксазол-5-іл)-метиленсульфоніламіди, синтетична олива, відносна в’язкість, показник заломлення, пляма зношення, несуча здатність.

Received date: 05.06.2019
Accepted date: 01.07.2019
Published date: 30.08.2019

1. Introduction

Today, the global production of lubricants is approximately 41 million tons/year, the lion’s share of which is oil [1]. Refined petroleum products are toxic and can accumulate in the environment, creating incorrigible environmental problems. Therefore, in Western Europe in recent decades there has been a question of improving the...

Copyright © 2019, Pavliuk O., Sukhoveev V., Pyliavskyi V., Kashkovsky V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0)
Thus, the isoxazole heterocycle is part of certain drugs, due to their wide range of practically useful properties. Isoxazole derivatives may be interesting in this regard of oils is an urgent problem of modern petrochemicals. The bearing capacity of oils and lubricants is of not only scientific, but also practical interest. The specified research objective is solved by the use of N,N-diallyl (3-arylisoxazol-5-yl)-methylenesulfonylamides (Ar: C₆H₅ (1); C₆H₄–4–CH₃ (2); C₆H₄–4–OC₂H₅ (3)) as antiwear additives to oils that are derived from the corresponding sulfonyl chloride and diallylamide. The aim of research is the use of N,N-diallyl (3-arylisoxazol-5-yl)-methylene sulfonylamides as additives to increase the bearing capacity of synthetic oils based on pentaerythritol and synthetic fatty acids (SFA).

2. Methods of research

The search for new substances as additives to increase the bearing capacity of oils and lubricants is not only scientific, but also practical interest. The specified research objective is solved by the use of N,N-diallyl (3-arylisoxazol-5-yl)-methylene sulfonylamides in the general formula:

\[
\text{R}: \text{H} (1); \text{CH₃} (2); \text{OCH₃} (3), \text{as additives to increase the bearing capacity of synthetic oils based on pentaerythritol and SFA.}
\]

Compounds (1)–(3) are prepared according to a known procedure [11] from the corresponding sulfonyl chloride and diallylamide.

As a reference, to compare the effect of the studied compounds on the tribological properties of oils, the industrial additive DF-11 (zinc dialkyldithiophosphate (4)) was used [12]. The disadvantages of using this additive in oils are the increased ability to form deposits on machine parts and high ash content. This, in fact, is the reason for the abrasive wear of the cylinder-piston group, deposition of soot in the combustion chamber, candles and other parts of the engine, reducing its service life and reliability [13].

The closest in structure to compounds (1–3) is allyl ether 2-mercaptobenzthiazole (5) in a concentration of 1–2 wt. %. It has been previously stated [14] as an ashless antiwear additive for lubricants. The oil based on pentaerythritol ester and n-butyric acid was obtained according to the procedure [15].

Some physical characteristics of the obtained oil were studied with the addition of N,N-diallyl (3-arylisoxazol-5-yl)-methylene sulfonylamides (1)–(3) (relative viscosity – with a VU viscosimeter (GOST 1532-54) according to [16], and the refractive index on the IRF-22 device (USSR) in accordance with [17]) (Table 1).

The relative viscosity is calculated according to the well-known formula, namely:

\[
\eta = t/t_0,
\]

where \(\eta\) is the relative viscosity; \(t\) is the expiration time of the oil with the additive; \(t_0\) is oil outflow time without additive.

Three measurements of the oil outflow time with an additive \((t)\) for various concentrations and three measurements of the oil outflow time without an additive were carried out. The arithmetic mean of the results of three determinations is taken as the result of determining the expiration time.

The refractive index was measured first at a temperature of 25 °C, and then recalculated \(n_D^{25}\) according to the formula:

\[
\eta_D^{25} = n_D^{25} + (t - 20) \cdot 0.00035,
\]

where \(n_D^{25}\) is the refractive index at the temperature of the experiment; \(n_D^{20}\) is the refractive index at a temperature of 20 °C; \(t\) is the temperature of the experiment, °C; 0.00035 is the change in refractive index when the temperature changes by 1 °C.

To assess the tribological properties of oils, indicators such as the load wear index \(U_l\), the bearing capacity (or maximum load) \(R_w\), and the welding load \(R_u\) and the diameter of the wear spot \(D_w\) are used. The bearing capacity of liquid lubricant provides a hydrodynamic friction regime in precision friction units of automobile and aircraft engines. The bearing capacity of lubricants increases due to additives that form microheterogeneous associates [18]. So, the additive can affect the structure of the oil with an increase in its bearing capacity.

Table 1

<table>
<thead>
<tr>
<th>Investigated substances</th>
<th>(C), wt. %</th>
<th>(\eta)</th>
<th>(t)</th>
<th>(R_w)</th>
<th>(R_u)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pentaerythritol tetrahydrobulate</td>
<td>–</td>
<td>–</td>
<td>(t_0)=5.52</td>
<td>1.4444</td>
<td>1.4462</td>
</tr>
</tbody>
</table>

The oil based on pentaerythritol ester and n-butyric acid was obtained according to the procedure [15].

Some physical characteristics of the obtained oil were studied with the addition of N,N-diallyl (3-arylisoxazol-5-yl)-methylene sulfonylamides (1)–(3) (relative viscosity – with a VU viscosimeter (GOST 1532-54) according to [16], and the refractive index on the IRF-22 device (USSR) in accordance with [17]) (Table 1).
In practical terms, the studied compounds (1)–(3) can be used as additives to existing oils and lubricants. Thus, aviation oils for gas turbine engines, helicopter gearboxes and other equipment of brands B-3V (TU 38.101295-85), LS-240 (TU 301-04-010-92) and PTS-225 (TU 38.401-58-1-90) are synthetic oils based on pentaerythritol esters and fatty acids with a complex of additives. They differ in viscosity, lubricating properties, pour points and other operational properties [19].

The dynamic strength of the test oil was evaluated according to the method of ASTM D2783 (GOST 9490-75) on a four ball friction machine according to the critical load index. This indicator represents the maximum load at which metal contact (scoring) does not yet occur during friction in the test liquid of standardized metal balls made of ShKh15 steel (microhardness – 64–66 HRC; stiffness parameter – Ra < 0.25 μm) [20].

Experimental conditions: rotation speed of the upper loaded balls in relation to three stationary balls – 1500 min⁻¹; oil temperature – 20 °C; test time at each load – 10 s; experiment repeatability – three tests for each load (Table 2) [21].

Table 2

<table>
<thead>
<tr>
<th>Investigated substances</th>
<th>Ł, wt. %</th>
<th>P_cr, H</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>0.1</td>
<td>800</td>
</tr>
<tr>
<td>(2)</td>
<td>0.1</td>
<td>710</td>
</tr>
<tr>
<td>(3)</td>
<td>0.01</td>
<td>800</td>
</tr>
<tr>
<td>0.01</td>
<td></td>
<td>800</td>
</tr>
<tr>
<td>0.01</td>
<td></td>
<td>705</td>
</tr>
<tr>
<td>DF-11 (4)</td>
<td>1.0</td>
<td>875</td>
</tr>
<tr>
<td>0.1</td>
<td></td>
<td>720</td>
</tr>
<tr>
<td>0.01</td>
<td></td>
<td>705</td>
</tr>
<tr>
<td>Allyl ester of 2-mercaptopenthenziazole (5)</td>
<td>2.0</td>
<td>875</td>
</tr>
</tbody>
</table>

According to the Table 1, the refractive index of oil with and without additives is close to the refractive index of glass, n_20° of which is from 1.485 to 1.925.

The study of the diameter of the wear spot D_w of compound (3) was carried out at revolutions of 1500 rpm, an initial temperature of 25 °C, a load of 98 N, and a study time of 1:00. The results obtained indicate that D_w of the oil without making the specified compound was 0.75 mm, and when it was added (0.1 wt. %) – 0.67 mm. Therefore, the reduction in wear is 10.67 %.

According to Table 2, additives (1)–(3) in low concentrations can significantly increase the bearing capacity of synthetic oils based on pentaerythritol and SFA. The most effective is compound (3), which at a concentration of 0.1 % of the mass significantly increases the bearing capacity of the oil. Moreover, the value for increasing this characteristic is 1.38 times greater in comparison with the industrial additive DF-11, and 1.37 times greater in comparison with allyl ester of 2-mercaptopenthenziazole, respectively. In addition, this compound is more effective in concentration, 10–20 times less compared with known additives.

4. Conclusions

Thus, the use of N,N-diallyl (3-arylisoxazol-5-yl)-methylenesulfonylamides as additives to increase the bearing capacity of synthetic oils based on ester of pentaerythritol and synthetic fatty acids, allows to increase the antiwear activity of lubricants. So, this indicates the prospects of their use for creating new effective compositions for oils and petroleum products.

References

2. Dyrektyva 2003/30/YeS. Yevropeiskoho Parlamentu ta Rady pro spryannya vykorystannia biolohichnoho palya u inshykh cyclus panochnychnoho palya dlia dlia transporta (08.05.2003).

Pavliuk Oleksandr, Engineer, Department of Organic and Petrochemical Synthesis, V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine, Kyiv, Ukraine, e-mail: pavluikasha@gmail.com, ORCID: https://orcid.org/0000-0002-1590-1675

Sukhovieiev Volodymyr, Doctor of Chemical Sciences, Leading Researcher, Head of Department of Chemistry, Nizkyn Mykola Gogol State University, Chernihivska Oblast, Ukraine, V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine, Kyiv, Ukraine, ORCID: https://orcid.org/0000-0002-1590-1675

Pylivskyi Volodymyr, Senior Researcher, Department of homogeneous Catalysis and Petroleum Additives, V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine, Kyiv, Ukraine, e-mail: pyliyvskiy@nas.gov.ua, ORCID: https://orcid.org/0000-0001-7422-0311

Kashkovskyi Volodymyr, Senior Researcher, Deputy Director for Research, Head of Department of Organic and Petrochemical Synthesis, V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine, Kyiv, Ukraine, e-mail: kashkovsky@bpci.kiev.ua, ORCID: https://orcid.org/0000-0001-8413-7132