Determination of Geometric and Kinematic Characteristics of FDM 3D Print Process

1. Introduction

The technology of additive production in recent years has become widespread in almost all spheres of human life and industries. Every second manufacturer in the world is increasing investments in additive manufacturing. Already more than 80 % of prototypes and 60 % of functional units are manufactured using 3D printing [1]. Analysts around the world see explosive growth in additive manufacturing. Already more than 80 % of prototypes and 60 % of functional units are manufactured using 3D printing [1]. The researchers tested a number of samples for tensile and shear forces. However, research does not allow to establish the strength of interlayer adhesion and geometric characteristics in the contact zone of the layers.

Similar studies were conducted by scientists from the University of Florida and the College of Engineering at the University of California at Berkeley [3]. The researchers tested a number of samples for tensile and shear forces made of ABS and PC. One of the main conclusions is the anisotropy of the mechanical properties between stretching and across the layers of the material. To study this issue, tests of printed samples for strength were carried out. The causes and nature, and most importantly, the prediction of the appearance of such defects are unknown.

The basic principle of additive manufacturing is the layering of structural material according to the digital model of the product. The most common additive technology is FDM (Fused Deposition Modeling) [2]. The devices of this technology use a polymer consumable in the form of a rod of a stable diameter – filament. When forming the product, the molten material is applied to an already frozen layer. It is known that polymeric materials have characteristics that are interchangeable with temperature and strain rate. It is this feature that creates problems when printing with one or another consumable polymeric material. The main place for the appearance of defects is the line between the cold and hot layer. Therefore, it is of interest to study the properties between the layers of the material. To study this issue, tests of printed samples for strength were carried out.

Similar studies were also carried out [4–6], in which various materials were tested with different printing parameters. The main disadvantages are that in all studies,
the conditions for the manufacture of samples were very variable. Comparing the results for the same materials, a difference in values should be noted. This can be explained by the anisotropy of properties and the heterogeneity of the structure of printed samples.

Of particular interest is the study [7]. This study shows a macro photo of the cross section of the structure of samples printed by nozzles of various diameters and with different layer thicknesses. They show that the internal volume includes a large number of cavities, and their shape and size are unstable.

The structure of printed products is generally poorly defined, so the physical characteristics of the samples are also ambiguous. Therefore, it is necessary to study the process of applying the material along the layer, to determine the geometric parameters of a single layer.

So, the object of research is the geometric parameters of the discrete layer of the prototype. The aim of research is to establish patterns of influence such as kinematics and operating modes of 3D printers on the uniformity and speed of spatial printing.

2. Methods of research

Based on the previous studies performed by the authors, uneven results were revealed for each type of sample. In addition, in each group of strength tests there were a certain number of experiments that fall out of the general picture. Therefore, it is necessary to study in detail the geometric parameters and dynamics of the process of applying the material within a single layer.

The determination of the dynamics of the process of building one layer from the extruder to the zero position by reverse idle. The process of shooting the 3D printing process

3. Research results and discussion

The results of measurements of the geometric parameters of the layer are as follows (Fig. 3, 4).

Based on the results, it is found that the thickness of the layer is uneven. At the beginning of the layer, the thickness is less than the diameter of the nozzle, gradually increasing and toward the end of the layer becomes larger than the diameter of the nozzle. Also, in the interval from the beginning of the layer to the middle, delamination Is present. That is, at the beginning of the movement there is an underextrusion, and at the end a «swelling» of the layer (Fig. 4, 5).

The distribution of the print head movement speeds within the framework of the formation of one layer for two types of 3D printers: Prusa i3 [8] and H-Bot [9] is established. The results are shown in Fig. 5, 6.
The obtained results show the dynamics of the extruder along the layer. Data from the speeds shows a difference from the settings in Cura Slicers [10]. For both types of mechanics, it turned out that the actual average speed is less than the specified one. Moreover, for each type of mechanics this difference is different.

To determine the difference, let’s determine the difference in the printing time of the samples from theoretical at different printing speeds for various designs of 3D printers (Fig. 7).

As can be seen from Fig. 7, with increasing printing speed, the difference from the theoretical printing time from the actual one gradually decreases. Moreover, prints for H-Bot mechanics are always more than printing on Prusa i3.

Fig. 4. Changing the thickness of the extruded PLA layer from the print start point

Fig. 5. Graph of the 3D printer extruder speed with Prusa i3 mechanics

Fig. 6. Graph of the 3D printer extruder speed with H-Bot mechanics

Fig. 7. Printing time for samples on different printers at different speeds

4. Conclusions

The results of experimental studies of 3D printing show that each polymer layer is applied unevenly, increasing in length. Actual printing is always more theoretical, the time difference gradually increases with decreasing printing speed. Printers with H-Bot kinematics show a greater deviation from the theoretical printing speed than printers with Prusa kinematics. The results are the basis for further more detailed study of the influence of the configuration of the forming organs and the design of FDM 3D printers on the spatial printing process.

References

8. Prusa research. Available at: https://www.prusa3d.com/

Oleksiyshen Vitalii, Postgraduate Student, Department of Chemical, Polymeric and Silicate Engineering, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Ukraine, e-mail: vitaliy.oleksiyshen@gmail.com, ORCID: https://orcid.org/0000-0002-0477-2388

Sokolskyi Aleksandr, PhD, Associate Professor, Department of Chemical, Polymeric and Silicate Machine Building, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Ukraine, e-mail: sokolskyi@ukr.net, ORCID: https://orcid.org/0000-0002-7929-3576

Kolosov Oleksandr, Doctor of Technical Sciences, Professor, Senior Researcher, Member of Academy of Sciences of Higher Education of Ukraine, Ukrainian Patent Attorney, Department of Chemical, Polymeric and Silicate Machine Building, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Ukraine, e-mail: e-kolosov@ukr.net, ORCID: http://orcid.org/0000-0001-8939-0591

Solovei Vladyslav, Postgraduate Student, Department of Chemical, Polymeric and Silicate Engineering, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Ukraine, e-mail: e_vSolovei84@gmail.com, ORCID: http://orcid.org/0000-0002-5638-2701