
INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

20 TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 2/2(58), 2021

ISSN 2664-9969

UDC 004.624 
DOI: 10.15587/2706-5448.2021.230174 
Article type «Reports on Research Projects»

ANALYSIS OF PROBLEMS   
OF STORAGE AND PROCESSING OF 
DATA IN SERVERLESS TECHNOLOGIES

The object of research is the problems of storing and processing data in serverless technologies. The research 
carried out is based on a logical approach to storage, data processing and transmission processes. The main hy
pothesis of the study is that when moving from a monolithic architecture to microservice architecture, and then 
from a microservice architecture to a serverless architecture, the process of storing and processing data requires 
modifications and new approaches to solving classical problems of working with data. The problem of interacting 
with data is an integral part of the work of almost all computer systems, as they lay the basis for the goal of creat
ing such systems. Serverless computing has already taken root in cloud computing. Improving its work is now one 
of the most popular tasks in the research field. In this article, let’s review one of the global problems – integrating 
serverless computing system with a database. As well as currently existing partial or complete solutions. Progress 
in this area can give impetus to the development of serverless technologies that supplant more outdated software 
development approaches. The result of these studies brings a certain understanding at what stage of development 
the above question is now. It also describes the advantages and disadvantages of the new systems. It is considered 
what innovations have been brought by the global giants in the development of serverless platforms, and what 
solutions are applied to open source platforms. This issue has not been fully resolved and requires developments 
and improvements, and therefore remains an excellent direction for development and new research.

Keywords: serverless technologies, serverless platforms, data storage and processing, databases.

Tetiana Naumenko, 
Anatolii Petrenko

© The Author(s) 2021

This is an open access article  

under the Creative Commons CC BY license

How to cite

Naumenko, T., Petrenko, A. (2021). Analysis of problems of storage and processing of data in serverless technologies. Technology Audit and Production 

Reserves, 2 (2 (58)), 20–25. doi: http://doi.org/10.15587/27065448.2021.230174

Received date: 18.12.2020

Accepted date: 28.01.2021

Published date: 30.04.2021

1.  Introduction

It’s no secret that lately the attention of almost all 
public cloud providers (Amazon AWS, Microsoft Azure, 
Google Cloud Platform and others) concentrated on promot
ing serverless technologies. Based on the trend of providing 
convenience to software developers, such technologies are 
gaining popularity at an incredible speed. Software develop
ment is usually associated with the management of physical 
infrastructure and server maintenance. Serverless computing 
allows developers to forget about administrative costs and 
infrastructure management, and concentrate on writing code. 
More specifically, serverless computing allows to create and 
run services without installing and maintaining servers or 
clusters, which saves developer resources and project budget. 
It should be clarified that the term «serverless» does not 
mean the absence of a server, but simply managing servers 
by cloud service providers using automated systems.

Serverless computing can be viewed as eventbased 
programming, since they use a function as the deploy
ment unit. Eventoriented programming means that the 
exploitation of the resources of a cloud provider stops 
when software developers do not perform any functions or 
applications. In addition, serverless architecture provides 

automatic scaling, allowing users to provide services, de
spite the increased workload. Since the main role in this 
architecture is performed by the function performed by 
the platform, serverless computing is called «Function as 
a service» (FaaS). In simple words, for the execution of 
each request, a separate container is created, and destroyed 
after execution.

But is everything so smooth and ideal for a quick 
transition to such an attractive way to create software? 
Despite the fact that the technology is relatively new, 
the research community is actively working on studying 
it and ways to improve it. In addition to the noticeable 
advantages of serverless computation, shortcomings have 
already been discovered, which in some cases call into 
question the rationality of switching to this technology.

Advantages of serverless computing:
– Payment for the amount of resources consumed. 
Computing resources are paid only when they are ac
tually used. This means that developers pay for the 
time when their application performs the functions of 
a user in response to specific events or requests.
– No server management. There is no need to allocate 
and maintain servers, no installation, maintenance or 
administration of software or runtime is required.



INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

21TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 2/2(58), 2021

ISSN 2664-9969

– Improved resource management. The cloud computing 
provider can exactly match the abstract demand for 
actual system resources. When an application does not 
start, the cloud provider distributes server resources 
among other running applications.
– Flexible scaling. Serverless architecture has the abi
lity to scale in accordance with the workload of the 
application. Developers no longer need to purchase 
additional infrastructure to serve unanticipated growth.
– Agile development. Using serverless computing allows 
to focus on application code, rather than infrastruc
ture maintenance. This benefits developers by reducing 
software complexity and better code optimization.
– Multilanguage support. Many platforms support se
veral programming languages, so users can choose the 
most convenient for them.
– Automatic provision of high availability. Serverless 
computing provides builtin high availability and fault 
tolerance. These features do not need to be specifically 
designed, since the services that run the application 
provide them by default.
Disadvantages of serverless computing:
– Cost. The fact that serverless computing can sig
nificantly reduce development costs is not always true. 
For example, serverless functions are currently the most 
attractive for CPUrelated computing. While I/O related  
functions are less accessible than on dedicated virtual 
machines or containers.
– Cold start. The key advantage of serverless comput
ing is the ability to scale to zero, which can lead to 
an increase in call delay due to cold start.
– Resource constraint. Resource constraints are necessary 
in order for the platform to cope with jumps and resist 
attacks. Serverless computing imposes restrictions on me
mory, function execution time, bandwidth and CPU usage.
– Security. There is a high risk of unsafe operation, since 
many users run their functions on a common platform. 
Thus, when downloading malicious code, there may be ne
gative consequences for the operation of other applications.
– Monitoring and debugging. Since users do not have 
control over the provider’s servers, there are limited 
opportunities to identify problems and bottlenecks.
– Availability of skills. Serverless Computing is a fairly 
new area, so there are often not enough developers 
with serverless programming skills.
In [1–3] describe well the approach to using serverless 

computing and the developed serverless platforms, but do 
not touch upon the specifics of the databases. This fact 
casts doubt on the transition from microservice technologies  
to serverless for software, an integral part of which is data 
storage and processing.

Therefore, it is relevant to research and analyze the 
work of serverless platforms with data. Thus, the object of 
research is the problems of storing and processing data in 
serverless technologies. And the aim of research is to find 
out and analyze what readymade solutions are presented 
in serverless platforms.

2.  Methods of research

The following scientific methods are used:
– analysis method when studying data on existing topics 
among scientific articles, forums, official sites of server
less platform providers;

– conversation method when clarifying the main fea
tures of the work of serverless databases at conferences 
from commercial suppliers of serverless platforms;
– synthesis method for identifying the necessary cha
racteristics of databases that must be present in the 
architecture of serverless platforms;
– analogy method when highlighting the disadvantages 
of existing solutions when moving from a monolithic or 
microservice architecture to a serverless architecture.

3.  Research results and discussion

3.1.  Database  integration  in  serverless  computing. As 
the first on the market of publicly accessible servers AWS 
were and remain the largest one, so it is not surprising 
that they were the first to launch the serverless computing 
platform called AWS Lambda. Lambda deals with large 
object storage – S3, key value storage – DynamoDB, 
queue service – SQS, notification service – SNS, and more.  
It is thanks to their precedence, AWS Lambda is now 
considered to be the most attractive to the research com
munity. Recently, researchers from UC Berkeley published 
an article [4], which described the current problems, dis
advantages and consequences of these shortcomings, which 
they found in cloud computing, based on the AWS Lambda 
platform. This does not mean that other representatives of 
cloud computing do not have these disadvantages, since 
they are all similar in terms of technology, although they 
differ in details. Describing in detail the limitations that 
are present today in the FaaS proposals (which were 
also indicated above), the authors derived a list of the  
ensuing consequences. And more specifically: 

– FaaS Stymies Distributed Computing;
– FaaS is a DataShipping Architecture;
– FaaS stymies hardwareaccelerated software innovation;
– FaaS discourages Open Source service innovation [4].
The first two points are directly related to the topic 

of this article. It would be better to describe in more 
detail what is meant. The first consequence emphasizes 
the fact that the lack of network addressing in serverless 
functions leads to the fact that the two functions can work 
together, transferring data through slow and expensive 
storage. This stymies basic distributed computing. The 
second consequence is that serverless functions are per
formed on isolated virtual machines separately from the 
data. Also, serverless functions are shortlived and non
addressable, so their capacity to cache state internally to 
service repeated requests is limited. The authors of the 
article describe the consequence of such an approach as 
an architectural antipattern: «ships data to code» rather 
than «shipping code to data» [4]. From the point of view 
of this approach to working with data, the hierarchy of 
memory makes it quite a bad design decision for reasons 
of delay, bandwidth and cost (and this contradicts the 
first advantage of FaaS, which refers to cost reduction).

Relying on such a pressing and clearly distinguished 
problem, the research community began an active work 
in the search for a solution. And there is progress! For 
example, in [5] authors talk about some Elastic Database 
Systems. Their assumption is that the design principles 
underlying the «stateless» FaaS platforms point the way to 
system abstractions that offer transformative improvements 
in the flexible scalability of stateintensive applications. 
Concentrating on the problem of the lack of a way to  



INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

22 TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 2/2(58), 2021

ISSN 2664-9969

address a function in FaaS, the authors propose extend
ing FaaS by partitioning the function executing instances 
across an invocation key space [2].

The authors claim that: «As illustrated in Fig. 1, the 
serverless runtime establishes a partitioning on the space 
of keys, then routes function invocations for each key to 
the same instance consistently. Additional configuration 
allows users to specify whether partitions may be served 
by only one instance, or by many, e. g., to support replicas 
for read scalability. If a partition becomes overloaded, the 
partitioned FaaS (pFaaS) runtime terminates the associated 
function instance, splits its key set, and creates two or 
more new ones in its place. Merging key sets for scalein 
works similarly» [5].

Fig. 1. An elastic database with a shared disk architecture built  
from partitioned FaaS (pFaaS) serverless compute and serverless  

storage (e. g., AWS S3 or EFS) [5]

This approach resembles the work of the virtual system 
of actors [6], which leads to the possible further approach 
Actors as a Service (AaaS) approach. How realistic it is, 
is not clear, since this is only a theory, not confirmed by 
practice yet.

3.2.  Serverless  Database. Restrictions on the use of 
databases in applications built on serverless computing 
technology lead to the fact that it is necessary a com
pletely new approach to creating a database. And since 
the principle of building architecture has moved from mo
nolith to microservices, and now completely to a set of 
functions, a similar solution should be implemented for 
databases, based on the same principles: lack of mainte
nance, payment only for execution and global distribution. 
This results in serverless databases.

In [7, 8] it is possible to track the transition from the 
usual and familiar to us databases to a new generation of 
serverless databases from the main suppliers of cloud tech
nologies (such as AWS, Azure, Google Cloud Platform, etc.). 
The authors describe the problem of dividing the work 
of both SQL databases and NoSQL, relying on the same 
problems and limitations. Thus, taking to this line of pre
sentation of new products, describing their advantages in 
the form of solving tasks, but without mentioning the 
disadvantages. This is due to the fact that the products 
are only presented and have not yet been fully studied, 
in order to understand whether they are absolutely fas

cinating to all areas in which problems and restrictions 
have somehow arisen. 

These restrictions are why it is necessary a new database 
for the serverless age. This next generation of database 
should share the same principles as serverless computing –  
global distribution, payperexecution pricing, zero mainte
nance, data replication and synchronization, sequence [8].

The most popular solutions at the moment:
– Amazon Aurora Serverless;
– Azure Cosmos DB;
– Fauna DB.

3.2.1. Amazon Aurora Serverless. Amazon Aurora Server
less is an ondemand, autoscaling configuration for Ama
zon Aurora (MySQLcompatible edition), where the data
base will automatically start up, shut down, and scale 
capacity up or down based on your application’s needs. 
It enables to run your database in the cloud without 
managing any database instances. It’s a simple, costeffec
tive option for infrequent, intermittent, or unpredictable  
workloads [9].

Manually managing database capacity can take up valuable 
time and can lead to inefficient use of database resources. 
With Aurora Serverless, it simply create a database end
point, optionally specify the desired database capacity range, 
and connect your applications. It is necessary to pay on  
a persecond basis for the database capacity you use when 
the database is active, and migrate between standard and 
serverless configurations with a few clicks in the Amazon 
RDS Management Console. Advantages [9]:

– Simple;
– Scalable;
– Costeffective;
– Highly available.

3.2.2. Azure Cosmos DB. A database for building blaz
ingly fast, planet scale applications with native support for 
NoSQL. Azure Cosmos DB was built from the ground up 
with global distribution and horizontal scale at its core. 
It offers turnkey global distribution across any number 
of Azure regions by transparently scaling and replicat
ing your data wherever your users are. Elastically scale 
your writes and reads all around the globe, and pay only 
for what you need. Azure Cosmos DB provides native 
support for NoSQL and OSS APIs including MongoDB, 
Cassandra, Gremlin and SQL, offers multiple welldefined 
consistency models, guarantees singledigitmillisecond read 
and write latencies at the 99th percentile, and guarantees 
99.999 high availability with multihoming anywhere in 
the world – all backed by industryleading, comprehensive 
service level agreements (SLAs) [10]. Advantages:

– Turnkey Global Distribution;
– Limitless and elastic scalability of writes and reads;
– Guaranteed low latency at 99th percentile;
– Welldefined consistency choices;
– Multimodel with native support for NoSQL APIs;
– Enterprisegrade performance and security.
Fig. 2 illustrates architecture of globally distributed, 

scalable serverless applications using Azure Functions and 
Azure Cosmos DB.

3.2.3. Fauna DB. FaunaDB Cloud is a serverless mana
ged offering of FaunaDB in the cloud that can be accessed 
via a functionasaservice provider.



INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

23TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 2/2(58), 2021

ISSN 2664-9969

In FaunaDB Cloud, data is replicated across multiple 
datacenters running on Amazon Web Services, Google Cloud 
Platform, and, Microsoft Azure [12]. Advantages [13]:

– Unified MultiModel;
– 100 % Distributed ACID;
– High Security;
– Horizontal Scalability;
– MultiTenancy;
– Operational Simplicity;
– Temporality;
– Fault Tolerance.
At first glance, it seems that these three representa

tives of serverless databases provide an ideal future for 
the field of serverless technologies. Of course, it is not 
possible immediately rely on the fact that they are the final 
solution and can be used anywhere and in any way. But 
it is also impossible not to agree with the fact that their 
appearance – this is a big leap in the database for the 
improvement of their integration into the serverless space.

3.3.  Database  as  a  Service. Despite such an attrac
tive solution, which is described in the previous section, 
there are still supporters of other approaches.

As a variant of the reason for their appearance, wit 
is possible to assume that the developers decided not to 
wait for decisions from the market leaders, but to try 
to invent their own ways to solve 
the problem themselves.

So in [14], the authors, hook
ing on the problem of connection 
delay to the database, paid attention 
to solutions from OpenFaaS using 
connection pools, since they support 
a set of established connections to 
the database in memory for future 
queries.

The authors also mentioned al
ternative ways to reduce latency:

1. Process the work asynchro
nously (using NATS Streaming to 
be able to fulfill requests some time 
after they are accepted).

2. Build a microservice (initial 
cost absorption in the longrunning 

microservice, sqlrest created in OpenFaaS – Golang mi
croservice for TSQL).

3. Use a managed DB service (using the database as 
thirdparty software, such as Firebase Realtime; «database 
as a service» approach).

Solutions of this kind require minimal changes to the 
interfaces, but are not designed to address a global problem.

A similar approach can be seen in [15]. The author 
focuses on the proposal to use the «database as a service» 
approach on the example of the transfer of the wellknown 
MongoDB database to MongoDB Atlas. This solution has 
the following advantages:

– Possibility to have automated operations;
– Rolebased access controls;
– Authentication;
– Scalability;
– The clusters are geodistributed and they come with 
excellent fault tolerance.
Despite the list of advantages, this approach still has 

a negative side. Not using the databases very often can 
cause the database to suffer from more significant response 
latency compared to a database that’s actively running on 
a dedicated server, virtual machine, or in a container [15].

3.4.  Serverless Database Platform. Another approach to 
databases in serverless technologies is presented in Fig. 3. 

Fig. 2. Serverless apps using Cosmos DB [11]

Fig. 3. Illustration of the benefits of the approach by avoiding most of the problem points [16]



INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

24 TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 2/2(58), 2021

ISSN 2664-9969

The authors describe a fullfeatured serverless platform 
that will help create serverless applications and serverless 
databases, suggesting the use of Back4App.

The advantages of such a database include the fol
lowing [16]:

– No server maintenance;
– Automatic and Flexible scaling;
– Builtin availability;
– No payment for idle capacity.

3.5.  Embedded  Serverless  Database. A special vision 
of the serverless database concept was proposed in [17]. 
The author claims that «by really serverless», it means 
«lambdaembedded databases» or «functionasaservice
embedded databases», to make it generic [17].

As the positive aspects of this approach highlighted:
– Databases are scaled along with lambda scaling;
– High performance due to the lack of network hops 
or serialization/deserialization for data access;
– Reducing components means reducing problems with 
their connections.
But this solution imposes its own restrictions on its use:
– The data must be relatively infrequently updated;
– Readonly data is considered ideal;
– The entire payload (including code and whatever 
data is being stored) should be under 250 MB unzip
ped, and ideally 50 MB zipped;
– Low memory profile for lower cost;
– Queries should be difficult to cache.
Tasks that can be solved in this way exist and the 

author cites them as an example (Geospatial Databases, 
Security Screening, Spell Checking/Typo Correction, Cach
ing The Hot Head, Graph Databases), so do not be afraid 
of such a number of restrictions.

3.6.  Discussion. Each described approach to solving the 
problem of integrating a database into serverless techno
logy has its advantages, and some of them, which have 
already passed the tests, have disadvantages or limitations.  
Returning to the initial requirements for a new genera
tion of databases, it is possible to conclude in the form 
of Table 1.

According to the Table 1, leading positions were headed 
by serverless technologies from leading companies in the 
field of serverless technologies.

But do not forget that they are new and are not fully 
understood and tested, which means that there are no 
disadvantages and limitations for them yet.

It is impossible not to emphasize the fact that each 
of the solutions implies that the project will be fully de
ployed on the provided platform. And since they differ from 
each other in basing on different types of databases (SQL, 
NoSQL etc.), users will not be able to choose between 
them. Perhaps, it is worth thinking about standardization 
for such serverless databases.

Despite the fact that the new databases, due to their 
advantages, make it possible to solve previously discovered 
problems of their integration with serverless computing, the 
more global problems of serverless computing still remain 
open. If the cost of the project with the use of new databases 
is reduced, then such concepts as «cold start», monitoring, 
debugging and security become only more relevant.

4.  Conclusions

Overall, the results show that the serverless computing 
giants are actively addressing the storage and use of data  
in serverless technologies. The data collected and analyzed in  
this article sheds light on the current state of affairs  
in this area, which has not been previously done. The 
analysis leads to the following conclusions:

– readymade commercial products provide the ability 
to work with data, providing the necessary functionality 
from the point of view of a serverless architecture;
– private solutions allow users to independently imple
ment processes for working with data, but do not have 
a wider range of capabilities, in contrast to commercial 
products;
– despite the leap in solving this problem, important 
aspects of working with data, such as cold start, secu
rity, state tracking, etc., remain unaffected.
The comparison results of the solutions presented in 

the article provide a basis for manipulating the choice 
of one or another serverless platform for solving specific 
problems. In contrast to the information that existed ear
lier, where only advantages are indicated, this article also 
describes disadvantages. This data will allow to calculate 
risks even at the stage of system design.

As recommended above, further research should focus 
on solving the problems that remain in the industry.

Table 1

Comparison of databases that are used in serverless architectures by their main characteristics

Main characteristics
Elastic 

Database 
Systems

Serverless Database Database as a Service (DBaaS)

Back4App
Embedded 
Serverless 
DatabaseServerless 

Aurora
Azure  

Cosmos DB
Fauna 

DB
Open FaaS

Mongo  
DB Atlas

Payperexecution O P P P O O O P

Global distribution O P P P O P O P

Zero maintenance O P P P O O P O

Data replication and synchronization P P P P O O O O

Work with the same data of two or more functions P P P P P P O O



INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

25TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 2/2(58), 2021

ISSN 2664-9969

References

1. Enes, J., Exp sito, R. R., Touri o, J. (2020). Realtime resource 
scaling platform for Big Data workloads on serverless envi
ronments. Future Generation Computer Systems, 105, 361–379. 
doi: http://doi.org/10.1016/j.future.2019.11.037 

2. Gim nezAlventosa, V., Molt , G., Caballer, M. (2019). A frame
work and a performance assessment for serverless MapReduce 
on AWS Lambda. Future Generation Computer Systems, 97, 
259–274. doi: http://doi.org/10.1016/j.future.2019.02.057 

3. Yussupov, V., Soldani, J., Breitenb cher, U., Brogi, A., Leymann, F.  
(2021). FaaSten your decisions: A classification framework and 
technology review of functionasaService platforms. Journal 
of Systems and Software, 175, 110906. doi: http://doi.org/ 
10.1016/j.jss.2021.110906 

4. Hellerstein, J. M., Faleiro, J., Gonzalez, J. E., SchleierSmith, J., 
Sreekanti, V., Tumanov, A., Wu, C. (2018). Serverless Computing:  
One Step Forward, Two Steps Back. CIDR’19. Available at: 
https://arxiv.org/pdf/1812.03651.pdf

5. SchleierSmith, J. (2019). Serverless Foundations for Elastic 
Database Systems. Conference on Innovative Data Systems 
Research (CIDR). Available at: http://cidrdb.org/cidr2019/
gongshow/abstracts/cidr2019_140.pdf

6. Bernstein, P. A., Bykov, S., Geller, A., Kliot, G., Thelin, J. 
(2014). Orleans: Distributed virtual actors for programmability 
and scalability. MSRTR2014–41. Available at: https://www.
microsoft.com/enus/research/wpcontent/uploads/2016/02/
OrleansMSRTR201441.pdf

7. DeBrie, A. Serverless Aurora: What it means and why it’s the 
future of data. Serverless Blogs. Available at: https://server
less.com/blog/serverlessaurorafutureofdata/

8. Winnicki, M. Serverless Database Wish List – What’s Missing 
Today. Serverless Blogs. Available at: https://serverless.com/
blog/serverlessdatabasewishlist/

9. Amazon Aurora Serverless. Available at: https://aws.amazon.com/ 
rds/aurora/serverless

10. Azure Cosmos DB – Globally distributed, multimodel data
base service. Available at: https://azure.microsoft.com/enus/
services/cosmosdb/

11. Serverless apps using Cosmos DB. Available at: https://docs.micro
soft.com/bscyrlba/azure/architecture/solutionideas/articles/ 
serverlessappsusingcosmosdb

12. Ramel, D. (2017). FaunaDB takes First Serverless Database 
to the cloud. ADTmag. Available at: https://adtmag.com/ 
articles/2017/03/16/faunadbserverlesscloud.aspx

13. FaunaDB: A fundamental shift in database technology. Available 
at: https://fauna.com/faunadb

14. Ellis, A. (2018). Serverless: Databases with OpenFaaS and Mongo.  
Alex Ellis’ Blog. Available at: https://blog.alexellis.io/serverless
databaseswithopenfaasandmongo/

15. Novkovic, N. (2018). What Is a Serverless Database? (Over
view of Providers, Pros, and Cons). Available at: https://dzone.
com/articles/whatisaserverlessdatabaseoverviewofprovider

16. Melo, A. A Serverless Database Platform. The Back4App Blog. 
Available at: https://blog.back4app.com/2017/12/28/serverless
database/

17. Barratt, J. (2018). Really Serverless Databases. Josh Barratt’s 
Blog. Available at: https://serialized.net/2018/07/serverless_db/

Tetiana Naumenko, Postgraduate Student, Department of System 
Design, National Technical University of Ukraine «Igor Sikorsky Kyiv 
Polytechnic Institute», Kyiv, Ukraine, ORCID: https://orcid.org/ 
000000028660597X, email: tnaumenko13@gmail.com

Anatolii Petrenko, Doctor of Technical Sciences, Professor, Depart
ment of System Design, National Technical University of Ukraine «Igor 
Sikorsky Kyiv Polytechnic Institute», Kyiv, Ukraine, ORCID: https://
orcid.org/0000000167127792, email: tolja.petrenko@gmail.com


