
INFORMATION AND CONTROL SYSTEMS:
SYSTEMS AND CONTROL PROCESSES

39TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 5/2(61), 2021

ISSN 2664-9969

UDC 004.5:004.65
DOI: 10.15587/2706-5448.2021.238460
Article type «Reports on Research Projects»

ANALYSIS OF THE USE OF THE
REDIS IN THE DISTRIBUTED ORDER
PROCESSING SYSTEM IN THE
RESTAURANT NETWORK

The object of research is a distributed order processing system for a restaurant chain. The subject of the research
is the analysis of the use of Redis for managing event queues in distributed systems.

When implementing a distributed order processing system in a restaurant chain with a possible load of up to
20,000 users per day, the Redis system was used. Management of 9 distributed subsystems was organized through
Redis. This solution showed an increase in the performance of the system under heavy load (from 50 transactions
per second), but the response time of the system in some cases of its operation was longer than without using Redis.
When working systems using Redis, it is necessary to take into account the amount of data with which Redis will
work, since it does not exceed the amount of RAM, the absence of differentiation into users and groups, and the
absence of a query language, which is replaced by a key-value scheme.

This research is aimed at analyzing the operation of the system during trial operation under real load. We com-
pared the operation of a configured system with Redis enabled and disabled. The main indicators for the analysis
were the system response time and the maximum request execution time. The research was carried out for 2 weeks,
the first week using the system settings with disabled Redis, the second – with enabled Redis. We selected 2 days
with a similar load on the system to each other. Especially indicative are the results of comparing the durations of
the longest queries, which show an almost constant value of the duration for the system in the mode of enabled
Redis. The hypothesis of an increase in the system response time at low loads was confirmed, but this value not
only leveled off at a load of 500 unique users but also became less at loads of 1000 unique users.

Keywords: microservice, service-oriented architecture, order processing, Redis, software development, software
engineering.

© The Author(s) 2021

This is an open access article

under the Creative Commons CC BY license

How to cite

Tkachenko, V., Lukianiuk, S. (2021). Analysis of the use of the Redis in the distributed order processing system in the restaurant network. Technology

Audit and Production Reserves, 5 (2 (61)), 39–43. doi: http://doi.org/10.15587/2706-5448.2021.238460

Received date: 21.04.2021

Accepted date: 07.06.2021

Published date: 23.09.2021

1.  Introduction

The Redis system (from Redis Labs) was used to imple-
ment a distributed order processing system in the restaurant
chain, which has more than 20 establishments, and the load
on network services ranges from 15 to 20 thousand users
per day. Redis organizes event storage using an immutable
mechanism [1]. An immutable mechanism is an analog of
a transaction log that only supports the addition of new data
to existing data, but not the modification of existing ones.

The implemented order processing system uses 9 dis-
tributed services, the operation of which is regulated by
Redis [2]. Management is implemented on the frontend
in the form of a library, which makes requests for keys
directly to the desired servers, which work only with lo-
cal data. The method of secure access was used to work
with databases [3].

When implementing the updated system at the testing
stage, this solution showed an increase in the speed of the

system under heavy load (from 50 transactions per second),
but the response time of the system in some cases was
longer than the previous solution.

This may be due to the increased response time of
the system, as additional resources are spent on marshal-
ling and unmarshalling. Marshaling means the process of
converting an object into a special data format for storage
or transmission [1].

The relevance of the research is due to the popula
rity of the functionality Redis in online systems, but the
use of Redis in distributed systems with a microservice
architecture requires a comprehensive analysis for each
individual implementation.

The object of research is a distributed order processing
system of a restaurant chain, and the subject of research is
the analysis of the use of Redis to manage event queues
in distributed systems. The aim of research is to analyze
the work distributed order processing system during ex-
perimental operation under real load. It is planned to

Valerii Tkachenko,
Svetlana Lukianiuk

INFORMATION AND CONTROL SYSTEMS:
SYSTEMS AND CONTROL PROCESSES

40 TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 5/2(61), 2021

ISSN 2664-9969

compare the performance of the configured network with
the Redis system on and off. The main indicator will be
the response time of the system and the maximum execu-
tion time of the request.

2.  Methods of research

The peculiarity of the implemented solution is the divi-
sion of the system into 9 separate subsystems (services),
each of which is responsible for a separate range of func-
tions (Fig. 1). The separation of subsystem functions took
place according to the paradigms of system development
based on microservices [4–6].

When a customer, product or order is created/dele
ted, the event must be transmitted asynchronously [7, 8]
to CRM (Customer relationship management) using
RESP (Redis Serialization Protocol) to manage interac-
tion with current and potential customers [9, 10]. In the
implemented structure, the CRM service can be started
and stopped at runtime without any impact on other micro
services. This means that all messages sent to the CRM
during downtime are pinned for processing.

According to the developed architecture of the distributed
order processing system, the client gets access only to the
API, which determines which service to transfer data for
processing. In Fig. 1 dotted line indicates data transfer via
RESP, other data transmissions are conducted via HTTP.

Using Redis in the API subsystem reduces the number
of database queries (DB), but requires constant conversion
of data to types supported by Redis [1, 9]:

–	 strings (implemented using the library of dynamic
strings C);
–	 lists (implemented as linked lists);
–	 sets and hashes (implemented as hash tables);
–	 ordered sets (implemented as lists with spaces –
a special type of balanced trees).

The main advantages of using Redis, which led to its
choice, include:

1)  possibility of a delay of up to milliseconds. Redis
supports response time in milliseconds. Storing data in
memory can read data faster than disk-based databases;

2)  ease of use by developers. Redis is syntactically
easy to use and requires a minimum amount of code to
integrate into the program;

3)  data splitting between nodes. This allows to scale
the system and process more data as the number of re-
quests increases;

4)  support for a wide range of programming languages.
Has many open source clients available to developers. Sup-
ported languages include Java, Python, PHP, C, C++, C#,
JavaScript, Node.js, Ruby, Go and many more;

5)  advanced data structures. Redis supports rows, lists,
sets, sorted sets, hashes, bits and hyperlog logs;

6)  multi-threaded architecture. Because the cache is
multithreaded, it can use multiple processing cores. This
means that it is possible to process more operations by
increasing computing power;

7)  ability to take snapshots of the system. With Redis,
it is possible to save data to a snapshot disk that it is
possible to use for backup or recovery;

8)  replication. Redis allows to create multiple copies
of the main Redis. This allows to scale database readings
and create highly accessible clusters;

9)  geospatial support. Redis has specially designed
teams to work with real-time geospatial data. It is possible
to perform operations such as searching for the distance
between two elements (for example, people or places) and
searching for all elements at a certain distance from a point.

The main costs of microservices, which they bear in
connection with the use of Redis, can be divided into
the following groups:

1)  CPU resource consumption
for marshalling and unmarshalling.
The application, when accessing
the cache, should «marshalize»
data and request. The cache must
unmarchalize this data, determine
what the request is, process, and
marshalize the response. The same
marshaling and unmarshalling op-
erations will take place when the
application interacts with the da-
tabase. Studies, which are covered
in [1, 9, 10] show that marshal-
ling and unmarshalling increase the
load on the processor by 80–85 %;

2)  excessive reading and writ-
ing time. This is due to cases where
the application reads more data
from the cache than necessary. Ac-
cording to a research [9], if the
record contains only 10 % of the
required information, then spend
46 % more CPU resources and
86 % more network resources than
is really necessary;

3)  network delays. The system
wastes time on constant remote ac-
cess to the cache and databases of
services, as well as on the transfer

Content of dishes
and promotions

subsystem

Dish accounting
subsystem

Orders generation
sybsystem

CRM

Message
processing
subsystem

Event processing
subsystem

Customer

Fig. 1. The architecture of the developed system of order processing of the restaurant chain

INFORMATION AND CONTROL SYSTEMS:
SYSTEMS AND CONTROL PROCESSES

41TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 5/2(61), 2021

ISSN 2664-9969

of the required amount of data in the request-response,
especially in combination with unnecessary readings. These
losses increase in direct proportion to how many cache
and database calls are needed to service a single request
from the customer.

Given the shortcomings presented, it is possible to
determine the main requirements for system performance
in the analysis:

–	 analysis of the system with on and off Redis should
be subject to similar loads;
–	 load in the system must be determined both by the
number of unique users and by the number of transac-
tions they create;
–	 the main parameters for analysis are the response
time of the system and the maximum execution time
of the request.
Since most of the workload falls on memcache and

its connection to applied logic, the industry has recently
focused most of its efforts on optimizing the cache and
communication with it.

Redis try to reduce excessive readings by supporting
the data structure on the memcache side, which allows to
select not all values under lock and key, but only part [9].

It was determined that most of the problems arise pre-
cisely because of the remoteness of the required data from
the applications. And so it is possible to solve problems
simply by transferring data to our logic. Thus, a system
with microservice management is implemented as of [10].

Due to the distributed architecture of the system, the stan-
dard metrics for evaluating the use of resources (CPU, RAM)
do not provide sufficient information on the quality of the
implemented solution. That is why it is possible to choose
work shifts with a similar load and analyze the response
time of the system and the maximum execution time of the
request throughout.

To simplify the visualization of the analysis results, it
was decided to group the data by hours.

To analyze the operation of the system in similar operat-
ing conditions, it was decided to use statistics of working
days with similar input conditions. The similarity of the
system load for the restaurant chain under analysis was
determined by the difference in the number of unique
users. The average difference with the grouping by hours
within the work shift should not exceed 50, and the total
difference within the work shift should not exceed 300.
The second parameter of similarity is the difference in the
intensity of transactions. This parameter is calculated as
the average of the difference between the average values
of the number of transactions per second with the group-
ing by hours should. This parameter should not exceed 5.

3.  Research results and discussion

The research was conducted for 2 weeks, in the first
week the system settings were used with Redis disabled,
the second – with Redis enabled. 2 days with a similar
load on the system were selected. The data in Tables 1, 2,
which are visualized in the graphs of Fig. 2 and Fig. 3
prove the similarity of the selected days. The average
difference with the grouping by hours within the work
shift is equal to – 15 (on average, 15 users more per
day of the system with Redis enabled). The total diffe
rence within the work shift is –261 (261 users more per
day with Redis enabled). The difference in transaction

intensity was –2.55. These indicators and the similarity
of the system load schedules confirm the correctness of
the selected operating changes to compare the system
operation in different configuration modes.

Table 1

Comparison of the average number of simultaneous unique users
with grouping by hours of work shift

Time
The average number of simultaneous unique users

at Redis Off at Redis On

6:00 204 220

7:00 226 196

8:00 202 217

9:00 429 480

10:00 649 726

11:00 642 734

12:00 841 814

13:00 934 1011

14:00 1075 1128

15:00 1087 1142

16:00 1075 1154

17:00 1193 1213

18:00 1180 1226

19:00 1310 1240

20:00 1338 1214

21:00 1015 945

22:00 904 935

23:00 499 468

Table 2

Comparison of the average number of transactions per second
with grouping by hours of work shift

Time
Average number of transactions per second

at Redis Off at Redis On

6:00 29.56 28.92

7:00 29.63 29.09

8:00 29.48 28.84

9:00 29.63 29.99

10:00 30.88 32.24

11:00 32.33 34.69

12:00 35.08 35.44

13:00 36.33 35.69

14:00 36.58 35.74

15:00 35.93 36.09

16:00 33.28 38.74

17:00 32.83 38.49

18:00 31.08 37.64

19:00 32.83 38.39

20:00 35.38 42.94

21:00 41.43 44.99

22:00 36.38 41.94

23:00 29.33 33.99

INFORMATION AND CONTROL SYSTEMS:
SYSTEMS AND CONTROL PROCESSES

42 TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 5/2(61), 2021

ISSN 2664-9969

The results of comparing the average value of the re-
sponse time (Table 3 and Fig. 4) and the maximum dura-
tion of the longest queries (Table 4 and Fig. 5) showed
the need to use a system with Redis enabled.

Particularly significant are the results of comparing the
values of the longest request duration, as shown by the
virtually unchanged value of the request duration for the

system in the Redis mode (Fig. 5). The
hypothesis of increasing the response time
of the system at low loads was confirmed,
but this value not only equalized at a load
of 500 unique users, but also decreased
at loads from 1000 unique users.

Table 3

Comparison of the average value of the response
time with grouping by hours of work shift

Time
Response time, p

at Redis Off at Redis On

6:00 0.021 0.091

7:00 0.023 0.092

8:00 0.026 0.093

9:00 0.032 0.094

10:00 0.092 0.107

11:00 0.112 0.108

12:00 0.099 0.109

13:00 0.120 0.125

14:00 0.182 0.132

15:00 0.283 0.137

16:00 0.355 0.144

17:00 0.333 0.135

18:00 0.370 0.137

19:00 0.366 0.123

20:00 0.248 0.095

21:00 0.121 0.083

22:00 0.059 0.081

23:00 0.027 0.080

This research was conducted without taking into ac-
count the settings of Redis, which would take into account
the frequency of queries to the tables of the database of
microservices. Implementing these settings can affect the
duration of queries. This will require separate monitoring
of the execution time of data queries, which with Redis
can limit the number of queries to the database.

0
5

10
15
20
25
30
35
40
45
50

Average number of transactions per second

Redis Off Redis On

Fig. 2. Graphs of the average number of simultaneous unique users per work shift

Fig. 3. Graphs of the average number of transactions per second per work shift

0

200

400

600

800

1000

1200

1400

1600

The average number of simultaneous unique users

Test day with Redis Off Test day with Redis On

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Response time, sec

Redis Off Redis On

Fig. 4. Graphs of the average value of the response time with grouping by hours

INFORMATION AND CONTROL SYSTEMS:
SYSTEMS AND CONTROL PROCESSES

43TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 5/2(61), 2021

ISSN 2664-9969

Further research involves finding the optimal setting
Redis for work with ultrahigh loading.

4.  Conclusions

A research of the use of Redis to manage queues in
a distributed order processing system in a restaurant chain
showed the reasons for the main cost of hardware resources
by microservices. The main CPU costs are marshaling and
unmarshalling, excessive read and write time, network delays.

The results of comparing the average response time and
the maximum duration of the longest queries showed the
need to use a system with Redis enabled. The system re-
sponse time affects the time of the first system response
to start generating response data, which affects the page
load speed. The execution time of the longest queries shows
not only the tendency to increase the processing time of
queries at high load on the system but also reports the
need to increase hardware resources for servers database
management systems (DBMS) in systems without Redis.

The research confirmed the hypothesis of a greater va
lue of the system response time at low loads (91–94 milli

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

The longest request, ms

Redis Off Redis On

Fig. 5. Graphs of the values of the longest queries with grouping by hours

Table 4
Comparison of the duration of the longest queries

Time
The longest request, ms

at Redis Off at Redis On

6:00 6.02 2.14

7:00 6.68 2.16

8:00 7.49 2.19

9:00 11.50 2.22

10:00 44.54 3.43

11:00 64.71 3.47

12:00 57.59 3.51

13:00 60.33 4.04

14:00 61.27 4.24

15:00 64.18 5.11

16:00 65.31 5.08

17:00 61.33 4.77

18:00 54.58 4.82

19:00 22.43 4.34

20:00 15.23 3.36

21:00 7.45 2.92

22:00 7.09 2.17

23:00 6.18 2.11

seconds with the Redis system on and
21–26 milliseconds when the Redis system
is disabled). On loads of 1000 unique users,
the system response time with Redis en-
abled is less than 2–3 times the response
time when Redis is off. When the Re-
dis system is enabled, the response time
is 123–144 milliseconds, with the Redis
system 283 disabled 283–370 milliseconds.

The results of comparing the values of the
longest duration of queries show an almost
unchanged value for the system in the Redis
mode (3.43–5.11 ms) against abrupt change
with Redis disabled (44.54–65.31 ms).

References

1.	 Ji, Z., Ganchev, I., O’Droma, M., Ding, T.
(2014). A Distributed Redis Framework
for Use in the UCWW. 2014 Internatio
nal Conference on Cyber-Enabled Distri
buted Computing and Knowledge Discovery.
doi: https://doi.org/10.1109/cyberc.2014.50

2.	 Reagan, R. (2017). Redis Cache. Web Ap-
plications on Azure, 257–300. doi: https://
doi.org/10.1007/978-1-4842-2976-7_7

3.	 Artamonov, Ye. B., Bieliakov, O. O. (2013).
Elektronni skhovyshcha danykh iz zakhysh-
chenym dostupom. Naukoiemni tekhnolohiyi,
4 (20), 402–405.

4.	 Vural, H., Koyuncu, M., Guney, S. (2017).
A Systematic Literature Review on Microser-
vices. Lecture Notes in Computer Science,
203–217. doi: https://doi.org/10.1007/978-
3-319-62407-5_14

5.	 Jamshidi, P., Pahl, C., Mendonca, N. C.,
Lewis, J., Tilkov, S. (2018). Microservices:
The Journey So Far and Challenges Ahead.
IEEE Software, 35 (3), 24–35. doi: https://
doi.org/10.1109/ms.2018.2141039

6.	 Di Francesco, P., Lago, P., Malavolta, I.
(2019). Architecting with microservices:
A systematic mapping study. Journal of Sys-
tems and Software, 150, 77–97. doi: https://
doi.org/10.1016/j.jss.2019.01.001

7.	 Auer, F., Lenarduzzi, V., Felderer, M., Taibi, D.
(2021). From monolithic systems to Micro
services: An assessment framework. In-
formation and Software Technology, 137,
106600. doi: https://doi.org/10.1016/j.infsof.
2021.106600

8.	 Dragoni, N., Lanese, I., Larsen, S. T., Mazzara, M., Mustafin, R.,
Safina, L. (2018). Microservices: How To Make Your Application
Scale. Perspectives of System Informatics, 95–104. doi: https://
doi.org/10.1007/978-3-319-74313-4_8

9.	 Liu, F., Li, J., Wang, Y., Li, L. (2019). Kubestorage: A Cloud Native
Storage Engine for Massive Small Files. 2019 6th International
Conference on Behavioral, Economic and Socio-Cultural Computing
(BESC). doi: https://doi.org/10.1109/besc48373.2019.8962995

10.	 Chen, S., Tang, X., Wang, H., Zhao, H., Guo, M. (2016).
Towards Scalable and Reliable In-Memory Storage System:
A Case Study with Redis. 2016 IEEE Trustcom/BigDataSE/ISPA.
doi: https://doi.org/10.1109/trustcom.2016.0255

*Valerii Tkachenko, PhD, Associate Professor, Department of
Computerized Control System, National Aviation University, Kyiv,
Ukraine, e-mail: tkachenkvg@gmail.com, ORCID: http://orcid.org/
0000-0002-1759-7267

Svetlana Lukianiuk, Researcher, Ukrainian Research Institute of
Special Equipment and Forensic Science of the Security Service of
Ukraine, Kyiv, Ukraine, ORCID: http://orcid.org/0000-0002-7469-8144

*Corresponding author

