DOI: https://doi.org/10.15587/2312-8372.2018.140519

Development of method of increasing accuracy of measuring angular velocity and acceleration of gyrostabilized platform

Viktor Tsiruk

Abstract


Modern mobile objects have significantly higher velocities, they are significantly more overloaded and uncontrollable mechanical disturbances (shocks, vibrations). Therefore, the requirements for the accuracy of means and methods for measuring the above-defined mechanical values of the instrument navigation complex have become much higher. However, the imperfection of the element base, the absence of new modern sensitive elements, the lack of the use of a new improved shock protection system, the lack of modern algorithmic methods do not allow to significantly improve accuracy and improve tactical and technical characteristics.

The object of research in this work is the process of measuring the angular velocity and acceleration of a gyrostabilized platform.

Ensuring the accuracy of the arms stabilizer is the most important modern problem, the solution of which ensures the security of Ukraine. According to tactical characteristics, the new weapon stabilizer expands combat capabilities of armored vehicles due to more precise guidance and stabilization on the target, facilitates the crew’s ability to control the tower.

Instrumental weapon stabilizer complexes are designed for stabilized guidance and tracking in the horizontal and vertical planes of surface, air and surface targets. The use of a modern element base has significantly improved the characteristics of the entire range of the weapon stabilizer. According to the technical characteristics of the arms stabilizer, it expands the combat capabilities of armored vehicles through more precise guidance and stabilization on the target, facilitates the crew’s ability to control the tower. And also does not require redirection to the same goal after the shot.

In this paper, an algorithm is considered that is applied when adjusting the position of the implement relative to the target during rapid joint movement of the tower and the machine. The algorithm is calculated in the mathematical block of the stabilization system. The algorithm is based on a mathematical analysis of the theory of motion of gyroscopes and improved from previous ones by supplementing the equation of motion. The formula is derived in the analytical form for its further application in the mathematical blocks of the stabilization system and calculations are given, as a result of which a mathematical model is obtained. If this mathematical model is introduced into the algorithmic block of the stabilization system, this will improve the accuracy of stabilization.

The conclusions analyze the results and give recommendations on the application of the method.


Keywords


weapon stabilizer; gyrostabilized platform; angular velocity measurements; acceleration measurements.

References


Darestani, M. R., Nikkhah, A. A., Sedigh, A. K. (2013). H∞/Predictive output control of a three-axis gyrostabilized platform. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 228 (5), 679–689. doi: http://doi.org/10.1177/0954410013493237

Pan, S., Wu, Y., Zhang, J., Zhou, S., Zhu, H. (2018). Modeling and control of a 2-degree-of-freedom gyro-stabilized platform driven by ultrasonic motors. Journal of Intelligent Material Systems and Structures, 29 (11), 2324–2332. doi: http://doi.org/10.1177/1045389x18770739

Hilkert, J. (2008). Inertially stabilized platform technology Concepts and principles. IEEE Control Systems, 28 (1), 26–46. doi: http://doi.org/10.1109/mcs.2007.910256

Bredenkamp, A. F. L. (2007). Development and control of 3-axis stabilized platform. Matieland: Departament of Electrical and Electronic Engineering Univercity of Stellenbosch, 95.

Savage, P. G. (2018). Improved strapdown inertial measurement unit calibration procedures. 2018 IEEE/ION Position, Location and Navigation Symposium (PLANS). doi: http://doi.org/10.1109/plans.2018.8373422

Malyutin, D. M. (2018). Miniature gyroscopic orientation system for unmanned aerial vehicle. 2018 25th Saint Petersburg International Conference on Integrated Navigation Systems (ICINS). doi: http://doi.org/10.23919/icins.2018.8405916

Tadano, S., Takeda, R., Miyagawa, H. (2013). Three Dimensional Gait Analysis Using Wearable Acceleration and Gyro Sensors Based on Quaternion Calculations. Sensors, 13 (7), 9321–9343. doi: http://doi.org/10.3390/s130709321

Bezvesilna, O. M., Tsiruk, V. H., Kvasnikov, V. P., Chikovani, V. V. (2014). Systemy navedennia ta stabilizatsii ozbroiennia. Zhytomyr, 176.

Korobiichuk, I., Bezvesilna, O., Tkachuk, A., Chilchenko, T., Nowicki, M., Szewczyk, R. (2016). Design of Piezoelectric Gravimeter for Automated Aviation Gravimetric System. Journal of Automation, Mobile Robotics & Intelligent Systems, 10 (1), 43–47. doi: http://doi.org/10.14313/jamris_1-2016/6

Korobiichuk, I., Bezvesilna, O., Kachniarz, M., Tkachuk, A., Chilchenko, T. (2016). Two-Channel MEMS Gravimeter of the Automated Aircraft Gravimetric System. Advances in Intelligent Systems and Computing, 481–487. doi: http://doi.org/10.1007/978-3-319-48923-0_51

Mel’nik, V. N., Karachun, V. V. (2004). Determining Gyroscopic Integrator Errors Due to Diffraction of Sound Waves. International Applied Mechanics, 40 (3), 328–336. doi: http://doi.org/10.1023/b:inam.0000031917.13754.2a

Pavlov, V. A. (1970). The Gyroscopic Effect: Its Manifestations and Uses. Defense Technical Information Center.

Bezvesilna, O. M., Tsiruk, V. H., Maliarov, S. P. et. al. (2016). Naukovi osnovy pobudovy pretsyziinoho chutlyvoho elementu kompleksu stabilizatora ozbroiennia lehkoi bronovanoi tekhniky. Kyiv: NPO «Prioritety», 234.

Pel'por, D. S. (1986). Giroskopicheskie sistemy. Teoriya giroskopov i girostabilizatorov. Moscow: Vysshaya shkola, 423.

Korobiichuk, I., Bezvesilna, O., Tkachuk, A., Chilchenko, T., Nowicki, M., Szewczyk, R. (2016). Design of Piezoelectric Gravimeter for Automated Aviation Gravimetric System. Journal of Automation, Mobile Robotics & Intelligent Systems, 10 (1), 43–47. doi: http://doi.org/10.14313/jamris_1-2016/6

Korobiichuk, I., Koval, A., Nowicki, M., Szewczyk, R. (2016). Investigation of the Effect of Gravity Anomalies on the Precession Motion of Single Gyroscope Gravimeter. Solid State Phenomena, 251, 139–145. doi: http://doi.org/10.4028/www.scientific.net/ssp.251.139

Korobiichuk, I., Bezvesilna, O., Tkachuk, A., Nowicki, M., Szewczyk, R. (2016). Piezoelectric Gravimeter of the Aviation Gravimetric System. Advances in Intelligent Systems and Computing. Cham: Springer, 753–761. doi: http://doi.org/10.1007/978-3-319-29357-8_65

Koval, A., Irigoyen, E. (2016). Mobile Wireless System for Outdoor Air Quality Monitoring. Advances in Intelligent Systems and Computing. Cham: Springer, 345–354. doi: http://doi.org/10.1007/978-3-319-47364-2_33

Tsyporenko, V., Tsyporenko, V. (2016). Development of direct method of direction finding with two-dimensional correlative processing of spatial signal. Eastern-European Journal of Enterprise Technologies, 6 (9 (84)), 63–70. doi: http://doi.org/10.15587/1729-4061.2016.85599


GOST Style Citations


Darestani M. R., Nikkhah A. A., Sedigh A. K. H∞/Predictive output control of a three-axis gyrostabilized platform // Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering. 2013. Vol. 228, Issue 5. P. 679–689. doi: http://doi.org/10.1177/0954410013493237 

Modeling and control of a 2-degree-of-freedom gyro-stabilized platform driven by ultrasonic motors / Pan S. et. al. // Journal of Intelligent Material Systems and Structures. 2018. Vol. 29, Issue 11. P. 2324–2332. doi: http://doi.org/10.1177/1045389x18770739 

Hilkert J. Inertially stabilized platform technology Concepts and principles // IEEE Control Systems. 2008. Vol. 28, Issue 1. P. 26–46. doi: http://doi.org/10.1109/mcs.2007.910256 

Bredenkamp A. F. L. Development and control of 3-axis stabilized platform. Matieland: Departament of Electrical and Electronic Engineering Univercity of Stellenbosch, 2007. 95 p.

Savage P. G. Improved strapdown inertial measurement unit calibration procedures // 2018 IEEE/ION Position, Location and Navigation Symposium (PLANS). 2018. doi: http://doi.org/10.1109/plans.2018.8373422 

Malyutin D. M. Miniature gyroscopic orientation system for unmanned aerial vehicle // 2018 25th Saint Petersburg International Conference on Integrated Navigation Systems (ICINS). 2018. doi: http://doi.org/10.23919/icins.2018.8405916 

Tadano S., Takeda R., Miyagawa H. Three Dimensional Gait Analysis Using Wearable Acceleration and Gyro Sensors Based on Quaternion Calculations // Sensors. 2013. Vol. 13, Issue 7. P. 9321–9343. doi: http://doi.org/10.3390/s130709321 

Systemy navedennia ta stabilizatsii ozbroiennia / Bezvesilna O. M. et. al. Zhytomyr, 2014. 176 p.

Design of Piezoelectric Gravimeter for Automated Aviation Gravimetric System / Korobiichuk I. et. al. // Journal of Automation, Mobile Robotics & Intelligent Systems. 2016. Vol. 10, Issue 1. P. 43–47. doi: http://doi.org/10.14313/jamris_1-2016/6 

Two-Channel MEMS Gravimeter of the Automated Aircraft Gravimetric System / Korobiichuk I. et. al. // Advances in Intelligent Systems and Computing. 2016. P. 481–487. doi: http://doi.org/10.1007/978-3-319-48923-0_51 

Mel’nik V. N., Karachun V. V. Determining Gyroscopic Integrator Errors Due to Diffraction of Sound Waves // International Applied Mechanics. 2004. Vol. 40, Issue 3. P. 328–336. doi: http://doi.org/10.1023/b:inam.0000031917.13754.2a 

Pavlov V. A. (1970). The Gyroscopic Effect: Its Manifestations and Uses. Defense Technical Information Center.

Naukovi osnovy pobudovy pretsyziinoho chutlyvoho elementu kompleksu stabilizatora ozbroiennia lehkoi bronovanoi tekhniky / Bezvesilna O. M. et. al. Kyiv: NPO «Prioritety», 2016. 234 p.

Pel'por D. S. Giroskopicheskie sistemy. Teoriya giroskopov i girostabilizatorov. Moscow: Vysshaya shkola, 1986. 423 p.

Design of Piezoelectric Gravimeter for Automated Aviation Gravimetric System / Korobiichuk I. et. al. // Journal of Automation, Mobile Robotics & Intelligent Systems. 2016. Vol. 10, Issue 1. P. 43–47. doi: http://doi.org/10.14313/jamris_1-2016/6 

Investigation of the Effect of Gravity Anomalies on the Precession Motion of Single Gyroscope Gravimeter / Korobiichuk I. et. al. // Solid State Phenomena. 2016. Vol. 251. P. 139–145. doi: http://doi.org/10.4028/www.scientific.net/ssp.251.139 

Piezoelectric Gravimeter of the Aviation Gravimetric System / Korobiichuk I. et. al. // Advances in Intelligent Systems and Computing. Cham: Springer, 2016. P. 753–761. doi: http://doi.org/10.1007/978-3-319-29357-8_65 

Koval A., Irigoyen E. Mobile Wireless System for Outdoor Air Quality Monitoring // Advances in Intelligent Systems and Computing. Cham: Springer, 2016. P. 345–354. doi: http://doi.org/10.1007/978-3-319-47364-2_33 

Tsyporenko V., Tsyporenko V. Development of direct method of direction finding with two-dimensional correlative processing of spatial signal // Eastern-European Journal of Enterprise Technologies. 2016. Vol. 6, Issue 9 (84). P. 63–70. doi: http://doi.org/10.15587/1729-4061.2016.85599 







Copyright (c) 2018 Viktor Tsiruk

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN (print) 2226-3780, ISSN (on-line) 2312-8372