DOI: https://doi.org/10.15587/2312-8372.2018.144182

Research of the conditions of using an experimental method for carrying out quality control and quantitative evaluation of the stability of radio electronic means to the impact of powerful electromagnetic radiation

Оleksandr Fyk

Abstract


The object of research is the REM functioning when it is irradiated with PEMI.

One of the most problematic issues is the lack of a general methodology for quantifying the REM sustainability to the destructive effect of the intensity of the field of electromagnetic field. Therefore, this study is devoted to determining the conditions for the use of an experimental methodology for the quality control and quantitative assessment of the REM resistance to the PEMI action.

In the course of the study, a technique was used that contains methods of theoretical generalization, analysis and synthesis, a method for representing nodes (parts) of REM using equivalent circuits, and a method for analyzing the stability of its nodes (parts, devices) separately. Modern REMs consist of many devices of various functional purposes. Each of the devices contains a large variety of links and elements. Therefore, the assessment of the REM sustainability by a block-by-block study of the stability of its nodes (parts, devices) will allow to evaluate the degree of PEMI impact on various nodes and the entire REM by separate parameters. In particular, the parameters characterizing the jamming environment created by the REM nodes, and the parameters characterizing the susceptibility degree of the various parts (nodes) of the REM to the effects of electromagnetic radiation.

The applied nature of the proposed technique is the determination of the conditions for the use of various test methods related to the determination of the REM resistance to the PEMI impact, providing the following advantages:

  • a higher degree of reliability of the results obtained in shorter periods of time;
  • use of new, more noise-resistant types of communication between individual CME parts and the investigated REM when creating measurement stands.

The research results allow to understand the order, the conditions of the experimental tests and the CME requirements. This will allow in subsequent studies to assess the stability of both a separate unit and the REM as a whole.


Keywords


powerful electromagnetic effect; radiotechnical means; stability evaluation of radio-electronic means

References


Sakharov, K. Yu., Yankovskiy, B. D., Milyaev, A. P., Morev, V. L., Mikheev, O. V., Turkin, V. A. (2009). Izmeritel'nyy kompleks dlya issledovaniya elektromagnitnoy obstanovki pri rasprostranenii sverkhkorotkikh elektromagnitnykh impul'sov v pomeshheniyakh zdaniya. Tekhnologii EMS, 3 (30), 18–22.

White Donald, R. J. (1987). A Handbook on Electromagnetic Interference and Compatibility. Gainesville: Don White Consultants, 870.

Barsukov, V. S. (2000). Kompleksnaya zashhita ot elektromagnitnogo terrorizma. Sistemy bezopasnosti svyazi i telekommunikatsiy, 32, 94–98.

Balyuk, N. V., Kechiev, L. N., Stepanov, P. V. (2007). Moshhnyy elektromagnitnyy impul's: vozdeystvie na elektronnye sredstva i metody zashhity. Moscow: OOO «Gruppa IDT», 478.

Fyk, A. I., Ol'khovikov, S. V. (2005). Metodika otsenki sostoyaniya vkhodnykh tsepey radiopriyomnykh ustroytv pri vozdeystvii elektromagnitnogo impul'sa yadernogo vzryva. Systemy obrobky informatsii, 5 (21), 170–178.

Larionenko, A. V., Simakin, S. V. (2009). Rezul'taty eksperimental'nykh issledovaniy vozdeystviya sverkhshirokopolosnykh elektromagnitnykh impul'sov na elementy telekommunikatsionnykh sistem. Tekhnologii EMS, 3 (30), 33–37.

Kravchenko, V. I., Bolotov, E. A., Letunova, N. I.; Kravchenko, V. I. (Ed.) (1987). Radioelektronnye sredstva i moshhnye elektromagnitnye pomekhi. Moscow: Radio i svyaz', 256.

Bogdanov, V. N., Zhukovskiy, M. I., Safronov, N. B. (2009). Sistema natsional'nykh standartov po zashhite informatsii ot prednamerennykh elektromagnitnykh vozdeystviy. Tekhnologii EMS, 1 (28), 23–28.

Akbashev, B. B., Balyuk, N. V., Kechiev, L. N. (2014). Zashhita ob"ektov telekommunikatsiy ot elektromagnitnykh vozdeystviy. Moscow: Grifon, 472.

DSTU EN 55014-1:2016 (EN 55014-1:2006; EN 55014-1:2006/A1:2009; EN 55014-1:2006/A2:2011, IDT). Elektromahnitna sumisnist. Vymohy do pobutovykh elektropryladiv, elektrychnykh instrumentiv ta analohichnoi aparatury. Chastyna 1. Emisiia zavad (2017). Kyiv: DP «UkrNDNTs», 94.

DSTU3680-98 (HOST 30586-98). Sumisnist tekhnichnykh zasobiv elektromahnitna. Metody zakhystu (1999). Kyiv: Derzhstandart Ukrainy, 10.

Walling, E. M. (2000). High Power Microwaves: Strategic and Operational Implications for Warfare. Occasional Paper No. 11. Center for Strategy and Technology / Air War College / Air University / Maxwell Air Force Base. Alabama, 52. doi: http://doi.org/10.21236/ada425472

Geis, J. P. (2003). Directed Energy Weapons on the Battlefield a New Vision for 2025. Occasional Paper No. 32 / Center for Strategy and Technology / Air War College / Air University / Maxwell Air Force Base. Alabama, 73. doi: http://doi.org/10.21236/ada463429

Gizatullin, Z. M. (2010). Tekhnologiya prognozirovaniya i povysheniya elektromagnitnoy sovmestimosti tsifrovykh elektronnykh sredstv pri vneshnikh vysokochastotnykh impul'snykh elektromagnitnykh vozdeystviyakh. Tekhnologii EMS, 3 (34), 22–29.

Camp, M., Nitsch, D., Sabath, F. (2004). Susceptibility of Electronic Equipment tо HEMP Threats. System Design and Assessment Notes. Notes 37. 17.

Baker, G., Castillo, J. P., Vance, E. F. (1992). Potential for a unified topological approach to electromagnetic effects protection. IEEE Transactions on Electromagnetic Compatibility, 34 (3), 267–274. doi: http://doi.org/10.1109/15.155839

Tesche, F. (1978). Topological concepts for internal EMP interaction. IEEE Transactions on Antennas and Propagation, 26 (1), 60–64. doi: http://doi.org/10.1109/tap.1978.1141785


GOST Style Citations


Izmeritel'nyy kompleks dlya issledovaniya elektromagnitnoy obstanovki pri rasprostranenii sverkhkorotkikh elektromagnitnykh impul'sov v pomeshheniyakh zdaniya / Sakharov K. Yu. et. al. // Tekhnologii EMS. 2009. Issue 3 (30). P. 18–22.

White Donald R. J. A Handbook on Electromagnetic Interference and Compatibility. Gainesville: Don White Consultants, 1987. 870 p.

Barsukov V. S. Kompleksnaya zashhita ot elektromagnitnogo terrorizma // Sistemy bezopasnosti svyazi i telekommunikatsiy. 2000. Issue 32. P. 94–98.

Balyuk N. V., Kechiev L. N., Stepanov P. V. Moshhnyy elektromagnitnyy impul's: vozdeystvie na elektronnye sredstva i metody zashhity. Moscow: OOO «Gruppa IDT», 2007. 478 p.

Fyk A. I., Ol'khovikov S. V. Metodika otsenki sostoyaniya vkhodnykh tsepey radiopriyomnykh ustroytv pri vozdeystvii elektromagnitnogo impul'sa yadernogo vzryva // Systemy obrobky informatsii. 2005. Issue 5 (21). P. 170–178.

Larionenko A. V., Simakin S. V. Rezul'taty eksperimental'nykh issledovaniy vozdeystviya sverkhshirokopolosnykh elektromagnitnykh impul'sov na elementy telekommunikatsionnykh sistem // Tekhnologii EMS. 2009. Issue 3 (30). P. 33–37.

Kravchenko V. I., Bolotov E. A., Letunova N. I. Radioelektronnye sredstva i moshhnye elektromagnitnye pomekhi / ed. Kravchenko V. I. Moscow: Radio i svyaz', 1987. 256 p.

Bogdanov V. N., Zhukovskiy M. I., Safronov N. B. Sistema natsional'nykh standartov po zashhite informatsii ot prednamerennykh elektromagnitnykh vozdeystviy // Tekhnologii EMS. 2009. Issue 1 (28). P. 23–28.

Akbashev B. B., Balyuk N. V., Kechiev L. N. Zashhita ob"ektov telekommunikatsiy ot elektromagnitnykh vozdeystviy. Moscow: Grifon, 2014. 472 p.

DSTU EN 55014-1:2016 (EN 55014-1:2006; EN 55014-1:2006/A1:2009; EN 55014-1:2006/A2:2011, IDT). Elektromahnitna sumisnist. Vymohy do pobutovykh elektropryladiv, elektrychnykh instrumentiv ta analohichnoi aparatury. Chastyna 1. Emisiia zavad. Kyiv: DP «UkrNDNTs», 2017. 94 p.

DSTU3680-98 (HOST 30586-98). Sumisnist tekhnichnykh zasobiv elektromahnitna. Metody zakhystu. Kyiv: Derzhstandart Ukrainy, 1999. 10 p.

Walling E. M. High Power Microwaves: Strategic and Operational Implications for Warfare. Occasional Paper No. 11. Center for Strategy and Technology / Air War College / Air University / Maxwell Air Force Base. Alabama, 2000. 52 p. doi: http://doi.org/10.21236/ada425472 

Geis J. P. Directed Energy Weapons on the Battlefield a New Vision for 2025. Occasional Paper No. 32 / Center for Strategy and Technology / Air War College / Air University / Maxwell Air Force Base. Alabama, 2003. 73 p. doi: http://doi.org/10.21236/ada463429 

Gizatullin Z. M. Tekhnologiya prognozirovaniya i povysheniya elektromagnitnoy sovmestimosti tsifrovykh elektronnykh sredstv pri vneshnikh vysokochastotnykh impul'snykh elektromagnitnykh vozdeystviyakh // Tekhnologii EMS. 2010. Issue 3 (34). P. 22–29.

Camp M., Nitsch D., Sabath F. Susceptibility of Electronic Equipment tо HEMP Threats // System Design and Assessment Notes. Notes 37. 2004. 17 p.

Baker G., Castillo J. P., Vance E. F. Potential for a unified topological approach to electromagnetic effects protection // IEEE Transactions on Electromagnetic Compatibility. 1992. Vol. 34, Issue 3. P. 267–274. doi: http://doi.org/10.1109/15.155839 

Tesche F. Topological concepts for internal EMP interaction // IEEE Transactions on Antennas and Propagation. 1978. Vol. 26, Issue 1. P. 60–64. doi: http://doi.org/10.1109/tap.1978.1141785 







Copyright (c) 2018 Оleksandr Fyk

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN (print) 2226-3780, ISSN (on-line) 2312-8372