DOI: https://doi.org/10.15587/2312-8372.2019.157581

Investigation of electrophysical properties of nanomodified fireproof EVA polymer compositions

Olena Chulieieva

Abstract


The object of research is the electrophysical properties of fireproof composite materials of ethylene with vinyl acetate, which include filler-flame retardants and modifiers. One of the biggest problems is the change in the electrophysical properties of fireproof composite materials, depending on the chemical properties and dispersion of fillers, fire retardants and modifiers. In order to solve this problem, the dependence of electric strength, specific volume electrical resistance, permittivity and tangent of dielectric loss angle on the number of modifiers and properties of ingredients of polymer compositions is investigated. A copolymer of ethylene with vinyl acetate is used as well as methods for determining the electrical strength, electrical bulk resistance, dielectric loss tangent, permittivity.

The results show that the dielectric strength significantly increases to 32-35 kV/mm in the case of use as fillers-flame retardants of aluminum oxide trihydrate with a smaller average particle diameter of the EVA-1-based polymer matrix and modifier 1. When using the EVA-2-based polymer matrix, high rates (41 kV/mm) obtained for compositions with hydromagnesite and modifier 2. The specific volume electrical resistance varies little for modified polymer compositions using magnesium oxide dihydrate with a smaller average particle size and modifier 2, as well as for the EVA-1 and EVA-2 polymer matrices. After exposure to moisture, the specific volume electrical resistance has a maximum value of 1.2∙1013Ohmcm for the EVA-1-based polymer composition, a flame retardant – aluminum oxide trihydrate and modifier 1. The permittivity and dielectric loss tangent have the best performance for EVA-1-based polymer compositions, hydromagnesite and modifier 2 (ε=3.3; tg=6∙10-3).

This makes it possible to increase the electrical properties of fireproof compositions for the manufacture of insulation and cable sheaths compared with similar known materials, this reduces material consumption by reducing thickness and makes it possible to increase the economic efficiency of production of fire-resistant cables.


Keywords


modified polymer compositions; ethylene-vinyl acetate copolymer; filler-flame retardants; electrophysical characteristics

References


Chulieieva, O. (2017). Development of directed regulation of rheological properties of fire retardant composite materials of ethylene vinyl acetate copolymer. Technology Audit and Production Reserves, 2 (1 (40)), 25–31. doi: https://doi.org/10.15587/2312-8372.2018.129699

Chuleeva, E. V, Zolotarev, V. M., Chuleev, V. L. (2016). Napolniteli-antipireny. Teplofizicheskie svoystva. Khimichna promyslovist Ukrainy, 3-4, 65–69.

Formosa, J., Chimenos, J. M., Lacasta, A. M., Haurie, L. (2011). Thermal study of low-grade magnesium hydroxide used as fire retardant and in passive fire protection. Thermochimica Acta, 515 (1-2), 43–50. doi: https://doi.org/10.1016/j.tca.2010.12.018

Obzor mineral'nyh antipirenov-gidroksidov dlya bezgalogennyh kabel'nyh kompoziciy (2009). Kabel'-news, 8, 41–43.

Ableev, R. (2009). Aktual'nye problemy v razrabotke i proizvodstve negoryuchih polimernyh kompaundov dlya kabel'noy industrii. Kabel'-news, 6-7, 64–69.

Chulieieva, O. (2017). Effect of flame retardant fillers on the fire resistance and physical­mechanical properties of polymeric compositions. Eastern-European Journal of Enterprise Technologies, 5 (12 (89)), 65–70. doi: https://doi.org/10.15587/1729-4061.2017.112003

Laoutid, F., Lorgouilloux, M., Lesueur, D., Bonnaud, L., Dubois, P. (2013). Calcium-based hydrated minerals: Promising halogen-free flame retardant and fire resistant additives for polyethylene and ethylene vinyl acetate copolymers. Polymer Degradation and Stability, 98 (9), 1617–1625. doi: https://doi.org/10.1016/j.polymdegradstab.2013.06.020

Lujan-Acosta, R., Sánchez-Valdes, S., Ramírez-Vargas, E., Ramos-DeValle, L. F., Espinoza-Martinez, A. B., Rodriguez-Fernandez, O. S. et. al. (2014). Effect of Amino alcohol functionalized polyethylene as compatibilizer for LDPE/EVA/clay/flame-retardant nanocomposites. Materials Chemistry and Physics, 146 (3), 437–445. doi: https://doi.org/10.1016/j.matchemphys.2014.03.050

Chulieieva, O. (2017). Effect of fire retardant fillers on thermophysical properties of composite materials of ethylene-vinyl acetate copolymer. Eastern-European Journal of Enterprise Technologies, 6 (12 (90)), 58–67. doi: https://doi.org/10.15587/1729-4061.2017.119494

Sonnier, R., Viretto, A., Dumazert, L., Longerey, M., Buonomo, S., Gallard, B. et. al. (2016). Fire retardant benefits of combining aluminum hydroxide and silica in ethylene-vinyl acetate copolymer (EVA). Polymer Degradation and Stability, 128, 228–236. doi: https://doi.org/10.1016/j.polymdegradstab.2016.03.030

Chang, M.-K., Hwang, S.-S., Liu, S.-P. (2014). Flame retardancy and thermal stability of ethylene-vinyl acetate copolymer nanocomposites with alumina trihydrate and montmorillonite. Journal of Industrial and Engineering Chemistry, 20 (4), 1596–1601. doi: https://doi.org/10.1016/j.jiec.2013.08.004

Jeencham, R., Suppakarn, N., Jarukumjorn, K. (2014). Effect of flame retardants on flame retardant, mechanical, and thermal properties of sisal fiber/polypropylene composites. Composites Part B: Engineering, 56, 249–253. doi: https://doi.org/10.1016/j.compositesb.2013.08.012

Valadez-Gonzalez, A., Cervantes-Uc, J. M., Olayo, R., Herrera-Franco, P. J. (1999). Chemical modification of henequén fibers with an organosilane coupling agent. Composites Part B: Engineering, 30 (3), 321–331. doi: https://doi.org/10.1016/s1359-8368(98)00055-9

Jesionowski, T., Pokora, M., Tylus, W., Dec, A., Krysztafkiewicz, A. (2003). Effect of N-2-(aminoethyl)-3-aminopropyltrimethoxysilane surface modification and C.I. Acid Red 18 dye adsorption on the physicochemical properties of silica precipitated in an emulsion route, used as a pigment and a filler in acrylic paints. Dyes and Pigments, 57 (1), 29–41. doi: https://doi.org/10.1016/s0143-7208(03)00006-8

Juvaste, H., Iiskola, E. I., Pakkanen, T. T. (1999). Aminosilane as a coupling agent for cyclopentadienyl ligands on silica. Journal of Organometallic Chemistry, 587 (1), 38–45. doi: https://doi.org/10.1016/s0022-328x(99)00264-8

Makarova, N. V., Trofimec, V. Ya. (2002). Statistika v Excel. Moscow: Finansy i statistika, 368.


GOST Style Citations


Chulieieva O. Development of directed regulation of rheological properties of fire retardant composite materials of ethylene vinyl acetate copolymer // Technology audit and production reserves. 2017. Vol. 2, Issue 1 (40). P. 25–31. doi: https://doi.org/10.15587/2312-8372.2018.129699 

Chuleeva E. V., Zolotarev V. M., Chuleev V. L. Napolniteli-antipireny. Teplofizicheskie svoystva // Khimichna promyslovist Ukrainy. 2016. Issue 3-4. P. 65–69.

Thermal study of low-grade magnesium hydroxide used as fire retardant and in passive fire protection / Formosa J. et. al. // Thermochimica Acta. 2011. Vol. 515, Issue 1-2. P. 43–50. doi: https://doi.org/10.1016/j.tca.2010.12.018 

Obzor mineral'nyh antipirenov-gidroksidov dlya bezgalogennyh kabel'nyh kompoziciy // Kabel'-news. 2009. Issue 8. P. 41–43.

Ableev R. Aktual'nye problemy v razrabotke i proizvodstve negoryuchih polimernyh kompaundov dlya kabel'noy industrii // Kabel'-news. 2009. Issue 6-7. P. 64–69.

Chulieieva O. Effect of flame retardant fillers on the fire resistance and physical­mechanical properties of polymeric compositions // Eastern-European Journal of Enterprise Technologies. 2017. Vol. 5, Issue 12 (89). P. 65–70. doi: https://doi.org/10.15587/1729-4061.2017.112003 

Calcium-based hydrated minerals: Promising halogen-free flame retardant and fire resistant additives for polyethylene and ethylene vinyl acetate copolymers / Laoutid F. et. al. // Polymer Degradation and Stability. 2013. Vol. 98, Issue 9. P. 1617–1625. doi: https://doi.org/10.1016/j.polymdegradstab.2013.06.020 

Effect of Amino alcohol functionalized polyethylene as compatibilizer for LDPE/EVA/clay/flame-retardant nanocomposites / Lujan-Acosta R. et. al. // Materials Chemistry and Physics. 2014. Vol. 146, Issue 3. P. 437–445. doi: https://doi.org/10.1016/j.matchemphys.2014.03.050 

Chulieieva O. Effect of fire retardant fillers on thermophysical properties of composite materials of ethylene-vinyl acetate copolymer // Eastern-European Journal of Enterprise Technologies. 2017. Vol. 6, Issue 12 (90). P. 58–67. doi: https://doi.org/10.15587/1729-4061.2017.119494 

Fire retardant benefits of combining aluminum hydroxide and silica in ethylene-vinyl acetate copolymer (EVA) / Sonnier R. et. al. // Polymer Degradation and Stability. 2016. Vol. 128. P. 228–236. doi: https://doi.org/10.1016/j.polymdegradstab.2016.03.030 

Chang M.-K., Hwang S.-S., Liu S.-P. Flame retardancy and thermal stability of ethylene-vinyl acetate copolymer nanocomposites with alumina trihydrate and montmorillonite // Journal of Industrial and Engineering Chemistry. 2014. Vol. 20, Issue 4. P. 1596–1601. doi: https://doi.org/10.1016/j.jiec.2013.08.004 

Jeencham R., Suppakarn N., Jarukumjorn K. Effect of flame retardants on flame retardant, mechanical, and thermal properties of sisal fiber/polypropylene composites // Composites Part B: Engineering. 2014. Vol. 56. P. 249–253. doi: https://doi.org/10.1016/j.compositesb.2013.08.012 

Chemical modification of henequén fibers with an organosilane coupling agent / Valadez-Gonzalez A. et. al. // Composites Part B: Engineering. 1999. Vol. 30, Issue 3. P. 321–331. doi: https://doi.org/10.1016/s1359-8368(98)00055-9 

Effect of N-2-(aminoethyl)-3-aminopropyltrimethoxysilane surface modification and C.I. Acid Red 18 dye adsorption on the physicochemical properties of silica precipitated in an emulsion route, used as a pigment and a filler in acrylic paints / Jesionowski T. et. al. // Dyes and Pigments. 2003. Vol. 57, Issue 1. P. 29–41. doi: https://doi.org/10.1016/s0143-7208(03)00006-8 

Juvaste H., Iiskola E. I., Pakkanen T. T. Aminosilane as a coupling agent for cyclopentadienyl ligands on silica // Journal of Organometallic Chemistry. 1999. Vol. 587, Issue 1. P. 38–45. doi: https://doi.org/10.1016/s0022-328x(99)00264-8 

Makarova N. V., Trofimec V. Ya. Statistika v Excel: ucheb. pos. Moscow: Finansy i statistika, 2002. 368 p.







Copyright (c) 2019 Olena Chulieieva

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN (print) 2664-9969, ISSN (on-line) 2706-5448