DOI: https://doi.org/10.15587/2312-8372.2019.158903

Synthesis of towed underwater vehicle spatial motion automatic control system under uncertainty conditions

Volodymyr Blintsov, Oleksandr Blintsov, Volodymyr Sokolov

Abstract


The object of research is the towed underwater vehicle (TUV) spatial motion, operating as part of the towed underwater system (TUS). The TUV structure does not contain any propulsive devices; it is driven to the motion by the tugboat through the cable-tug. The task of controlling the TUV is provision of the desired dynamics of its translational motion. Manual control mode allows performing only short-term missions and does not exclude the occurrence of operator errors during control. To perform long underwater missions, it is necessary to use automated TUV.

For the synthesis of automatic control system (ACS) controllers, the method of minimizing local functionals is used. It allows getting control laws without information about the structure and parameters of the mathematical model of the control object. To study the synthesized ACS, a simulation method using computer simulation is used. It allows assessing the ACS quality without significant financial costs necessary for the marine natural experiment.

The ACS of TUV spatial motion is synthesized, it provides sufficient accuracy of control of the vertical and lateral coordinates of the TUV under uncertainty conditions. For its synthesis and operation, information about the structure and parameters of the mathematical model of the control object is not required. The control law, on the basis of which ACS controllers are synthesized, does not contain information on derivatives of a controlled variable. Therefore, the feedback loops of the synthesized ACS have a simple structure compared to the ACSs synthesized using the well-known methods that use the coordinates of the object's phase space.

The dynamics of the operation of the synthesized TUV spatial motion ACS was studied at various towing speeds. The duration of the transient processes from the moment the ACS exits the saturation zone to the moment the control error falls within the permissible range and the control accuracy are quite satisfactory. In comparison with the underwater vehicles known spatial motion ACSs, the synthesized ACS does not require a mathematical model of the control object for its synthesis and operation.


Keywords


towed underwater vehicle; automatic control system; spatial motion; uncertainty conditions

References


Egorov, V. I. (1981). Podvodnye buksiruemye sistemy. Leningrad: Sudostroenie, 304.

Ikonnikov, I. B., Gavrilov, V. M., Puzyrev, G. V. (1993). Podvodnye buksiruemye sistemy i bui neytral'noy plavuchesti. Saint Petersburg: Sudostroenie, 224.

Fossen, T. I. (2011). Handbook of marine craft hydrodynamics and motion control. Norway: John Wiley & Sons Ltd, 596. doi: http://doi.org/10.1002/9781119994138

Poddubnyy, V. I., Shamarin, Yu. E., Chernenko, D. A., Astakhov, L. S. (1995). Dinamika podvodnykh buksiruemykh sistem. Saint Petersburg: Sudostroenie, 200.

Dudykevych, V., Blintsov, O. (2016). Tasks statement for modern automatic control theory of underwater complexes with flexible tethers. Eureka: Physics and Engineering, 5, 25–36. doi: http://doi.org/10.21303/2461-4262.2016.00158

Blintsov, O. V., Sokolov, V. V. (2017). Specialized simulating complex for studying motion dynamics of the towed underwater system. Collection of Scientific Publications NUS, 3, 63–69. doi: http://doi.org/10.15589/jnn20170308

Minowa, A., Toda, M. (2018). A High-Gain Observer-Based Approach to Robust Motion Control of Towed Underwater Vehicles. IEEE Journal of Oceanic Engineering, 1–14. doi: http://doi.org/10.1109/joe.2018.2859458

Chupina, K. V., Kataev, E. V., Khannanov, A. M., Korshunov, V. N., Sennikov, I. A. (2018). Robust automatic control system of vessel descent-rise device for plant with distributed parameters “cable – towed underwater vehicle.” Journal of Physics: Conference Series, 1015, 032167. doi: http://doi.org/10.1088/1742-6596/1015/3/032167

Ramesh, R., Ramadass, N., Sathianarayanan, D., Vedachalam, N., Ramadass, G. A. (2013). Heading control of ROV ROSUB6000 using non-linear model-aided PD approach. International Journal of Emerging Technology and Advanced Engineering, 3 (4), 382–393.

Soltan, R. A., Ashrafiuon, H., Muske, K. R. (2010). ODE-based obstacle avoidance and trajectory planning for unmanned surface vessels. Robotica, 29 (5), 691–703. doi: http://doi.org/10.1017/s0263574710000585

García-Valdovinos, L. G., Salgado-Jiménez, T., Bandala-Sánchez, M., Nava-Balanzar, L., Hernández-Alvarado, R., Cruz-Ledesma, J. A. (2014). Modelling, Design and Robust Control of a Remotely Operated Underwater Vehicle. International Journal of Advanced Robotic Systems, 11 (1), 1–16. doi: http://doi.org/10.5772/56810

Bessa, W. M., Dutra, M. S., Kreuzer, E. (2008). Depth control of remotely operated underwater vehicles using an adaptive fuzzy sliding mode controller. Robotics and Autonomous Systems, 56 (8), 670–677. doi: http://doi.org/10.1016/j.robot.2007.11.004

Bessa, W. M., Dutra, M. S., Kreuzer, E. (2013). Dynamic Positioning of Underwater Robotic Vehicles with Thruster Dynamics Compensation. International Journal of Advanced Robotic Systems, 10 (9), 325. doi: http://doi.org/10.5772/56601

Tam, D. Ch. (2013). Experimental research of a towed underwater vehicle altitude automatic control system. Technology Audit and Production Reserves, 5 (5 (13)), 29–31. doi: http://doi.org/10.15587/2312-8372.2013.18381

Nadtochii, V. A. (2013). Self-propelled underwater system control integration within maritime technological complex. Eastern-European Journal of Enterprise Technologies, 5 (4 (65)), 40–45. Available at: http://journals.uran.ua/eejet/article/view/18342

Fernandes, D. de A., Sørensen, A. J., Pettersen, K. Y., Donha, D. C. (2015). Output feedback motion control system for observation class ROVs based on a high-gain state observer: Theoretical and experimental results. Control Engineering Practice, 39, 90–102. doi: http://doi.org/10.1016/j.conengprac.2014.12.005

Blintsov, O. V. (2018). Systemy avtomatychnoho keruvannia rukhom pidvodnykh kompleksiv z hnuchkymy zviazkamy: navchalnyi posibnyk. Mykolaiv: Natsionalnyi universytet korablebuduvannia imeni admirala Makarova, 251.

Blintsov, O. (2016). Formation of a reference model for the method of inverse dynamics in the tasks of control of underwater complexes. Eastern-European Journal of Enterprise Technologies, 4 (2 (82)), 42–50. doi: http://doi.org/10.15587/1729-4061.2016.74875

Lukomskiy, Yu. A., Peshekhonov, V. G., Skorokhodov, D. A. (2002). Navigatsiya i upravlenie dvizheniem sudov. Saint Petersburg: Elmor, 360.

Krut'ko, P. D. (2004). Obratnye zadachi dinamiki v teorii avtomaticheskogo upravleniya. Tsikl lektsiy. Moscow: Mashinostroenie, 576.

Blintsov, O. V., Sokolov, V. V., Korytskyi, V. I. (2018). Avtomatychne keruvannia bezekipazhnym pidvodnym kompleksom systemy monitorynhu akvatorii v umovakh nevyznachenosti. Suchasni problemy informatsiinoi bezpeky na transporti, 19–26.


GOST Style Citations


Egorov V. I. Podvodnye buksiruemye sistemy: textbook. Leningrad: Sudostroenie, 1981. 304 p.

Ikonnikov I. B., Gavrilov V. M., Puzyrev G. V. Podvodnye buksiruemye sistemy i bui neytral'noy plavuchesti. Saint Petersburg: Sudostroenie, 1993. 224 p.

Fossen T. I. Handbook of marine craft hydrodynamics and motion control. Norway: John Wiley & Sons Ltd, 2011. 596 p. doi: http://doi.org/10.1002/9781119994138 

Dinamika podvodnykh buksiruemykh sistem / Poddubnyy V. I. et. al. Saint Petersburg: Sudostroenie, 1995. 200 p.

Dudykevych V., Blintsov O. Tasks statement for modern automatic control theory of underwater complexes with flexible tethers // Eureka: Physics and Engineering. 2016. Issue 5. P. 25–36. doi: http://doi.org/10.21303/2461-4262.2016.00158 

Blintsov O. V., Sokolov V. V. Specialized simulating complex for studying motion dynamics of the towed underwater system // Collection of Scientific Publications NUS. 2017. Vol. 3. P. 63–69. doi: http://doi.org/10.15589/jnn20170308 

Minowa A., Toda M. A High-Gain Observer-Based Approach to Robust Motion Control of Towed Underwater Vehicles // IEEE Journal of Oceanic Engineering. 2018. P. 1–14. doi: http://doi.org/10.1109/joe.2018.2859458 

Robust automatic control system of vessel descent-rise device for plant with distributed parameters «cable – towed underwater vehicle» / Chupina K. V. et. al. // Journal of Physics: Conference Series. 2018. Vol. 1015. P. 032167. doi: http://doi.org/10.1088/1742-6596/1015/3/032167 

Heading control of ROV ROSUB6000 using non-linear model-aided PD approach / Ramesh R. et. al. // International Journal of Emerging Technology and Advanced Engineering. 2013. Vol. 3, Issue 4. P. 382–393.

Soltan R. A., Ashrafiuon H., Muske K. R. ODE-based obstacle avoidance and trajectory planning for unmanned surface vessels // Robotica. 2010. Vol. 29, Issue 5. P. 691–703. doi: http://doi.org/10.1017/s0263574710000585 

Modelling, Design and Robust Control of a Remotely Operated Underwater Vehicle / Garcia-Valdovinos L. G. et. al. // International Journal of Advanced Robotic Systems. 2014. Vol. 11, Issue 1. P. 1–16. doi: http://doi.org/10.5772/56810 

Bessa W. M., Dutra M. S., Kreuzer E. Depth control of remotely operated underwater vehicles using an adaptive fuzzy sliding mode controller // Robotics and Autonomous Systems. 2008. Vol. 56, Issue 8. P. 670–677. doi: http://doi.org/10.1016/j.robot.2007.11.004 

Bessa W. M., Dutra M. S., Kreuzer E. Dynamic positioning of underwater robotic vehicles with thruster dynamics compensation // International Journal of Advanced Robotic Systems. 2013. Vol. 10, Issue 9. P. 325. doi: http://doi.org/10.5772/56601 

Tam D. Ch. Experimental research of a towed underwater vehicle altitude automatic control system // Technology Audit and Production Reserves. 2013. Vol. 5, Issue 5 (13). P. 29–31. doi: http://doi.org/10.15587/2312-8372.2013.18381 

Nadtochii V. A. Self-propelled underwater system control integration within maritime technological complex // Eastern-European Journal of Enterprise Technologies. 2013. Vol. 5, Issue 4 (65). P. 40–45. URL: http://journals.uran.ua/eejet/article/view/18342

Output feedback motion control system for observation class ROVs based on a high-gain state observer: theoretical and experimental results / Fernandes D. A. et. al. // Control Engineering Practice. 2015. Vol. 39. P. 90–102. doi: http://doi.org/10.1016/j.conengprac.2014.12.005 

Blintsov O. V. Systemy avtomatychnoho keruvannia rukhom pidvodnykh kompleksiv z hnuchkymy zviazkamy: navchalnyi posibnyk. Mykolaiv: Natsionalnyi universytet korablebuduvannia imeni admirala Makarova, 2018. 251 p.

Blintsov O. Formation of a reference model for the method of inverse dynamics in the tasks of control of underwater complexes // Eastern-European Journal of Enterprise Technologies. 2016. Vol. 4, Issue 2 (82). P. 42–50. doi: http://doi.org/10.15587/1729-4061.2016.74875 

Lukomskiy Yu. A., Peshekhonov V. G., Skorokhodov D. A. Navigatsiya i upravlenie dvizheniem sudov: textbook. Saint Petersburg: Elmor, 2002. 360 p.

Krut'ko P. D. Obratnye zadachi dinamiki v teorii avtomaticheskogo upravleniya. Tsikl lektsiy: textbook. Moscow: Mashinostroenie, 2004. 576 p.

Blintsov O. V., Sokolov V. V., Korytskyi V. I. Avtomatychne keruvannia bezekipazhnym pidvodnym kompleksom systemy monitorynhu akvatorii v umovakh nevyznachenosti: proceeding // Suchasni problemy informatsiinoi bezpeky na transporti. 2018. P. 19–26.







Copyright (c) 2019 Volodymyr Blintsov, Oleksandr Blintsov, Volodymyr Sokolov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN (print) 2664-9969, ISSN (on-line) 2706-5448