Analysis of metamorphism and tendency of black coals to spontaneous combustion




metamorphism, endogenous fire, spontaneous combustion of coal, geological and genetic factors, elemental composition


The object of this study is coals of different stages of metamorphism and the volatile products of their thermal decomposition. Currently, based on the basic genetic signs of metamorphism, there is no reliable regulatory framework for determining the hazardous properties of mine plastics, including the propensity of coal for spontaneous combustion. Difficulties in systematization consist in the absence of at least one classification parameter, which determines the need for an additional analysis of the physicochemical properties of coals of different stages of metamorphism and the volatile products of their thermal decomposition as an object of study.

Thanks to the obtained functional dependences characterizing the elemental composition of fossil fuels in the entire range of a series of metamorphism, it is possible to evaluate the classification indices of fossil fuels. The result shows that changes in the properties of coal as a result of transformations of the internal structure can take maximum or minimum values. It is impossible to judge the change in the properties of coals from the elemental content of these components by the monotonous and one-sided changes in the components С0, О0, and N0. The nature of the dependence of Н0 on Vdaf and specific gravity (Kd) suggests that coals acquire new properties after Vdaf decreases by less than 30–25 %, and specific gravity at Kd> 1.3

It is noted that coals with the same properties can in some cases be characterized by different values of the classification indicators (Vdaf Cdaf, Kd), in others–- coals with different values of the classification indicators have the same properties. The changes in the physicomechanical and calorific value of coal from Vdaf and Сdaf are complex and ambiguous. This is indirect evidence of changes in the internal structure of coals in the process of their geological transformation. The restructuring of the internal structure of coal led to a change in their electromagnetic characteristics.

It is proposed, when establishing the propensity of coal for spontaneous combustion by genetic and technological parameters, to use modern knowledge in the field of geology, historical geology and paleontology, physics, chemistry, thermodynamics, as well as experience in the industrial use of coal.

Author Biographies

Mykola Antoshchenko, Volodymyr Dahl East Ukrainian National University, 59-a, Tsentralnyi ave., Severodonetsk, Ukraine, 93400

Doctor of Technical Sciences, Professor

Department of Chemistry and Industrial Safety Measures

Vadym Tarasov, Volodymyr Dahl East Ukrainian National University, 59-a, Tsentralnyi ave., Severodonetsk, Ukraine, 93400

PhD, Associate Professor

Department of Chemistry and Industrial Safety Measures

Olha Zakharova, Volodymyr Dahl East Ukrainian National University, 59-a, Tsentralnyi ave., Severodonetsk, Ukraine, 93400

PhD, Associate Professor

Department of Chemistry and Industrial Safety Measures

Olena Zolotarova, Volodymyr Dahl East Ukrainian National University, 59-a, Tsentralnyi ave., Severodonetsk, Ukraine, 93400


Department of Chemical Engineering and Ecology

Arthur Petrov, Luhansk Scientific Reserch Forensic Center of the Ministry of Internal Affairs of Ukraine, 22, Vyzvolyteliv str., Rubizhne, Lugansk region, Ukraine, 93003

Forensic Expert in the Field of Physical and Chemical Research

Department of Materials and Product Research


Zhu, H., Sheng, K., Zhang, Y., Fang, S., Wu, Y. (2018). The stage analysis and countermeasures of coal spontaneous combustion based on “five stages” division. PLOS ONE, 13 (8), e0202724. doi:

Muraoka, H., Uchida, T., Sasada, M., Yagi, M., Akaku, K., Sasaki, M. et. al. (1998). Deep geothermal resources survey program: igneous, metamorphic and hydrothermal processes in a well encountering 500 °C at 3729 m Depth, Kakkonda, Japan. Geothermics, 27 (5-6), 507–534. doi:

Lahiri, A. (1951). Metamorphism of coal. Economic Geology, 46 (3), 252–266. doi:

Qin, Z. (2018). New advances in coal structure model. International Journal of Mining Science and Technology, 28 (4), 541–559. doi:

Peacock, S. M. (2003). Thermal structure and metamorphic evolution of subducting slabs. Geophysical Monograph-American Geophysical Union, 138, 7–22. doi:

Li, H., Zou, X., Mo, J., Wang, Y., Chen, F. (2018). Coal Deformation, Metamorphism and Tectonic Environment in Xinhua, Hunan. Journal of Geoscience and Environment Protection, 6 (9), 170–182. doi:

Zhuravlev, Y. N., Porokhnov, A. N. (2019). Computer simulation of coal organic mass structure and its sorption properties. International Journal of Coal Science & Technology, 6 (3), 438–444. doi:

Ahamed, M. A. A., Perera, M. S. A., Matthai, S. K., Ranjith, P. G., Dong-yin, L. (2019). Coal composition and structural variation with rank and its influence on the coal-moisture interactions under coal seam temperature conditions – A review article. Journal of Petroleum Science and Engineering, 180, 901–917. doi:

Tian, H. Y., Li, Y., Zhang, Y. D., Liu, Q. S., Zhi, K. D., He, R. X., Zhang, X. R. (2014). Fundamental Study on Steam Gasification Reactivity of Typical Different Metamorphic Grade Coals. Advanced Materials Research, 953-954, 1201–1204. doi:

Pymonenko, D. (2019). Relationship between the indices of physical and mechanical properties of coal and rock, gas saturation and tectonic dislocation of Donbas. E3S Web of Conferences, 109, 00076. doi:

González Valdes, L., Friis Aage, V., Nowak-Woźny, D. (2018). Dielectric properties of coal ash. Zeszyty Energetyczne, 5.

Vasilenko, T. A., Kirillov, A. K., Sobolev, V. V., Doroshkevich, A. S., Pronskii, E. A. (2017). Izmenenie elektrofizicheskikh parametrov uvlazhnennogo kamennogo uglia pri magnitoimpulsnom vozdeistvii. Fiziko-tekhnicheskie problemy gornogo proizvodstva, 19, 5–18.

Vasilkovskyi, V., Minieiev, S., Kaluhina, N. (2019). Bonding energy and methane amount at the open surface of metamorphic coal. E3S Web of Conferences, 109, 00108. doi:

Cheng, Z., Li, L.-H., Zhang, Y.-N. (2019). Laboratory investigation of the mechanical properties of coal-rock combined body. Bulletin of Engineering Geology and the Environment. doi:

Ivanov, V. P. (2015). Promyshlenno-energeticheskaia klassifikaciia dlia ocenki racionalnogo ispolzovaniia uglei. Izvestiia Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov, 326 (7), 104–111.

GOST 25543-88. Brown coals, hards coals and anthracites. Classification according to genetic and technological parameters (1988). Gosudarstvennii standart Soiuza SSR. Moscow: Izd-vo standartov, 19.

Kalandarashvili, A. O. (2017). Izmenenie elektricheskikh svoistv kamennogo uglia pri nagrevanii tokom. Nauchnoe i obrazovatelnoe prostranstvo: perspektivy razvitiia, 112–115.

Pashkovskii, P. S., Kostenko, V. K., Zaslavskii, V. P., Khorolskii, A. T., Zabolotnii, A. G. et. al. (1997). KD 12.01.401-96 Endogennye pozhary na ugolnykh shakhtakh Donbassa. Preduprezhdenie i tushenie. Instrukciia. Doneck: NIIGD, 68.

Antoschenko, N. I. (2006). Metan v ugolnykh plastakh ot obrazovaniia do vydeleniia. Alchevsk: DonGTU, 267.

Mironov, K. V. (1982). Spravochnik geologa-ugolschika. Moscow: Nedra, 311.

Sharma, A., Sakimoto, N., Anraku, D., Uebo, K. (2014). Physical and Chemical Characteristics of Coal-binder Interface and Carbon Microstructure near Interface. ISIJ International, 54 (11), 2470–2476. doi:

Nikolskogo, B. P. (Ed.) (1967). Spravochnik khimika. Vol. 6. Syre i produkty promyshlennosti organicheskikh veschestv. Leningrad: Khimiia, 1012.

Larikov, N. N. (1985). Teplotekhnika. Moscow: Stroiizdat, 432.

Wojtacha-Rychter, K., Smoliński, A. (2017). Sorption characteristic of coal as regards of gas mixtures emitted in the process of the self-heating of coal. E3S Web of Conferences, 19, 01010. doi:

Zheng, Q. R., Zeng, F. G., Zhang, S. T. (2011). Characteristics and Mechanisms of Gaseous Organic Compound Generation during Coking. Applied Mechanics and Materials, 71-78, 4710–4716. doi:

Ban, Y. P., Li, Y., Tang, Y. H., Wang, J., Liu, Q. S., Zhi, K. D. et. al. (2014). Low-Temperature Oxidation Gas Products and Spontaneous Combustion Tendency of Shengli Lignite. Advanced Materials Research, 953-954, 1210–1214. doi:

Yu, Y., Jiang, H., Mi, Y., Gu, H., Gong, D., Qian, J. (2017). Effect of hydrothermal dewatering on the moisture content of brown coal. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 40 (3), 358–363. doi:

Geologo-uglekhimicheskaia karta Doneckogo basseina. DonUGI. Vyp. VIII (1954). Moscow: Ugletekhizdat, 430.

Abiev, Z. A., Rodionov, V. A., Zhikharev, S. Ia., Pikhkonen, L. V. (2018). Issledovanie vzryvchatykh svoistv kamennougolnoi pyli glubokikh shakht Kuzneckogo basseina. Izvestiia TulGU. Nauki o Zemle, 1. Available at: Last accessed: 08.12.2019





Reports on research projects