Numerical simulation of crack propagation in bimetallic spatial structures

Authors

  • Олександр Володимирович Гондлях National Technical University of Ukraine Kyiv Polytechnic Institute, Peremogi 37, Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0003-2490-2829
  • Роман Євгенович Нікітін National Technical University of Ukraine Kyiv Polytechnic Institute, Peremogi 37, Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0002-9985-6129
  • Владислав Юрійович Онопрієнко National Technical University of Ukraine Kyiv Polytechnic Institute, Peremogi 37, Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0001-9945-8289

DOI:

https://doi.org/10.15587/2312-8372.2014.25276

Keywords:

destruction, bimetallic distillation column, crack, numerical simulation, APROKS

Abstract

The chemical industry uses welded bimetallic vessels and apparatuses that periodically run repair process. Violating welding procedure may cause defects that may lead to destruction of bimetallic vessels and apparatuses.

There are cases of destruction of bimetallic vessels and apparatuses at loads much lower than planned. Therefore, identifying and investigating defects in the structure at the design stage to prevent accidents by modeling the processes, connected with the destruction is an important issue.

Destruction under comparison has emerged in the case of the distillation column with a diameter of 3200 mm and a wall thickness of 28 mm (in the destruction zone) at a pressure of 1.2 MPa. Herewith, a crack with the length of ~ 6.6 m and an opening width of up to 120 mm has developed.

The column material is plastic, so the crack development runs within a certain time. Crack propagation process is non-linear and crack development time-dependent, which in turn affects the internal pressure and crack propagation rate.

Air losses are found using the known ratio, which takes into account the loss factor, crack opening surface area, absolute pressure in the column and temperature.

In the paper it was assumed that crack opening growth under Irvine is half of the plastic zone and depends on the tangential stresses in the column, crack length and plastic limit for the column material.

Based on a complex APROKS, a model of crack propagation in bimetallic structures was developed. Numerical simulation of the crack propagation process is carried out in the work by integrating the equations of motion in time depending on the crack development parameters.

The system APROKS can be recommended for practical implementation in the design and operation of equipment for chemical engineering and petroleum industry.

Author Biographies

Олександр Володимирович Гондлях, National Technical University of Ukraine Kyiv Polytechnic Institute, Peremogi 37, Kyiv, Ukraine, 03056

Professor

Department of chemical, polymer and silica Engineering

Роман Євгенович Нікітін, National Technical University of Ukraine Kyiv Polytechnic Institute, Peremogi 37, Kyiv, Ukraine, 03056

Department of Chemical, Polymer and Silica Engineering

Владислав Юрійович Онопрієнко, National Technical University of Ukraine Kyiv Polytechnic Institute, Peremogi 37, Kyiv, Ukraine, 03056

Department of Chemical, Polymer and Silica Engineering

References

  1. Mayer, G. Risk analysis determines priorities among pipe-replacement projects [Text]/ G. Mayer, H. J. van Dyke, C. Myriek// Oil and Gas Journal. – 1987. – V.85, No38. – P. 100-104.
  2. Statyukha, G. Assessment explosion-proof and fire risk industrial targets in a context of strategy of sustainable development [Text]/ G. Statyukha, M. Pidmohilnyy, T. Bojko, V. Bendyug// Summaries of 16th International Congress of Chemical and Process Engineering «CHISA 2004». – Praha (Czech Republic), 2004. – P. 5-70.
  3. Biefer, G. The stepwise cracking of pipe line steel in sour environments [Text]/ G. Biefer// Materials performance. – June1982. – P. 19-34.
  4. Lyons, W. C. Standard Handbook of Petroleum and Natural Gas Engineering [Text]/ W. C. Lyons. – Gulf Publishing Company, 1996. – P. 297-360.
  5. Alami, R. Contrôle Par Gamma-Ray Scanning de la Colonne de Distillation Atmosphérique [Text]/ R. Alami, A. Bensitel, M. El Ouazzani, M. Abidate, M. Darouich// 91.C.100 de la SAMIR – Mohammedia, Morocco, Technical Report, CNESTEN-DIAIRI, May 2002. – P. 92-95.
  6. Мухин, В. Н. Исследование причин хрупких разрушений биметаллических аппаратов [Текст]/ В. Н. Мухин, Л. Е. Ватник// НТРС «Эксплуатация оборудования». – 1983. – №1. – С 3-7.
  7. Aziz, A. K Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations [Text]/ A. K. Aziz, I. M. Babuska. – New York: Academic Press, 1972. – P. 12-32.
  8. Мухин, В. Н. Особенности экспертизы промышленной безопасности биметаллических сосудов и аппаратов [Текст]/ В. Н. Мухин, Ю. Н. Самохин, А. В. Гришин// Химическая техника. – 2010. – №5. – С. 20-24.
  9. Киричевский, В. В. Нелинейные деформации термомеханики конструкций из слабосжимаемых эластомеров [Текст]/ В. В. Киричевский, А. С. Сахаров. – К.: Будівельник, 1992. – С. 209-215.
  10. Сахаров, A. C. Моментная схема конечных элементов (МСКЭ) с учетом жестких смещений [Текст]/ А. С. Сахаров// Сопротивление материалов и теория сооружений. – К.: Будівельник, 1974. – Вып. 24. – С. 147–156.
  11. Tierean, M. Computing of Stress Intensity Factor using J-Integral Method with F.E.A [Text]/ M. Tierean, L. Baltes// Annals of DAAAM 2009, Proc of the 20th Int. DAAAM Symp, 2009. – P. 1105-1106.
  12. Броек, Д. Основы механики разрушения [Текст]: пер. с англ./ Д. Броек. – М.: Высш. школа, 1980. – С. 365-368.
  13. Герц, Е. В. Пневматические устройства и системы в машиностроении [Текст]: справочник/ Е. В. Герц. – М.: Машиностроение, 1981. – С. 281-288.
  14. Mayer, G., van Dyke, H. J., Myriek, C. (1987). Risk analysis determines priorities among pipe-replacement projects. Oil and Gas Journal, v.85, No38, 100-104.
  15. Statyukha, G., Pidmohilnyy, M., Bojko, T., Bendyug, V. (2004). Assessment explosion-proof and fire risk industrial targets in a context of strategy of sustainable development. Summaries of 16th International Congress of Chemical and Process Engineering «CHISA 2004». Praha (Czech Republic), 57-70.
  16. Biefer, G. (June 1982). The stepwise cracking of pipe line steel in sour environments. Materials performance, 19-34.
  17. Lyons, W. C. (1996). Standard Handbook of Petroleum and Natural Gas Engineering. Gulf Publishing Company, 297-360.
  18. Alami, R., Bensitel, A., El Ouazzani, M., Abidate, M., Darouich, M. (2002). Contrôle Par Gamma-Ray Scanning de la Colonne de Distillation Atmosphérique. 91.C.100 de la SAMIR – Mohammedia, Morocco, Technical Report, CNESTEN-DIAIRI, 92-95.
  19. Mukhin, V. N., Vatnik, L. E. (1983). Investigation of the causes brittle fractures bimetallic devices. NTRS "Operation of equipment", № 1, 3-7.
  20. Aziz, A. K., Babuska, I. M. (1972). Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations. New York: Academic Press, 12-32.
  21. Mukhin, V. N., Samohin, Y. N., Grishin, А. В. (2010). Features examination of industrial safety bimetallic vessels and vehicles. Chemical engineering, № 5, 20-24.
  22. Kirichevskiy, V. V., Sakharov, A. S. (1992). Nonlinear deformation thermomechanics designs of slightly compressible elastomers. K.: Budivelnik, 209-215.
  23. Sakharov, A. S. (1974). Torque finite element scheme (FEMS) to meet the stringent displacement. Strength of materials and theory of structures, № 24. K.: Budivelnik, 147-156.
  24. Tierean, M., Baltes, L. (2009). Computing of Stress Intensity Factor using J-Integral Method with F.E.A. Annals of DAAAM 2009, Proc of the 20th Int. DAAAM Symp., 1105-1106.
  25. Broek, D. (1980). Fundamentals of Fracture Mechanics. Translation from English. M.: Higher. School, 365-368.
  26. Hertz, E. V. (1981). Pneumatic devices and systems engineering. M.: Mechanical Engineering, 281-288.

Published

2014-05-29

How to Cite

Гондлях, О. В., Нікітін, Р. Є., & Онопрієнко, В. Ю. (2014). Numerical simulation of crack propagation in bimetallic spatial structures. Technology Audit and Production Reserves, 3(1(17), 23–27. https://doi.org/10.15587/2312-8372.2014.25276

Issue

Section

Technology audit