Design of polymeric composite materials for coatings and sealants with increased weather resistance

Authors

DOI:

https://doi.org/10.15587/2312-8372.2017.93383

Keywords:

protective coatings, hydrogenated oligobutadienedion, rheological properties, effect of filler, weather resistant properties

Abstract

In order to develop polymeric composite materials (PCM) for coatings and sealants with good weather resistance and physical and mechanical properties, the object of research is oligomeric composition based on hydrogenated oligobutadienedions with finite hydroxyl groups. The main disadvantage of oligobutadienedion-based compositions is unsatisfactory chemical resistance to air, due to the presence of double bonds in the polymer chain.

In order to maximize eliminate the main disadvantage, it is decided to use oligomers that are subjected to partial hydrogenation.

It is revealed that GI oligomers can be considered as binding bases of mortarless elastomeric compositions for coatings and sealants with good weather resistance due to the low viscosity and sufficiently small unsaturation values. Analysis of the kaolin effect as a filler on structural and mechanical properties of GI oligomers is determines that due to the low structural viscosity of GI oligomers for practical use as a binding PCM bases, it is necessary further inject the structuring additives into them, for example – Aerosil.

The presence of hydroxyl groups makes it possible to perform composition structuring using diisocyanates at room temperature to obtain ozone resistant sealants and protective coatings. It is determined that the coatings, derived from kaolin-filled (20 % wt.) and aerosil (5 % wt.) GI oligomer, are characterized by high adhesion to steel Ст3, more than 5 MPa for separation, without the use of primers and adhesives.

Author Biographies

Світлана Вікторівна Сайтарли, Kyiv National University of Technologies and Design, Nemirovich-Danchenko str., 2, Kyiv, 01011

Postgraduate

Department of Applied Ecology, Technology of Polymers and Chemical Fibers

Вікторія Петрівна Плаван, Kyiv National University of Technologies and Design, Nemirovich-Danchenko str., 2, Kyiv, 01011

Doctor of Technical Sciences, Professor, Head of Department

Department of Applied Ecology, Technology of Polymers and Chemical Fibers

Юрій Миколайович Пушкарьов, Odessa National Polytechnic University, Shevchenko ave., 1, Odessa, 65044

PhD, Assistant Professor

Department of Organic andPharmaceuticalTechnology

References

  1. Barabash, D. E., Barabash, A. D. (2015). Design features of the formulations of corrosion-resistant materials based on liquid rubbers. Bulletin of Voronezh State University of Architecture and Civil Engineering, 2 (9), 47–54.
  2. Turchaninov, V. I. (2012). Tehnologiia krovel'nyh i gidroizoliatsionnyh materialov. Orenburg: OOO IPK «Universitet», 285.
  3. Medvedev, V. P., Ogrel, A. M., Lukianichev, V. V., Hamidulin, M. G. (27.09.2002). Kompozitsiia dlia pokrytii. Patent № 2190002 RF, MPK S 09 D175/08. Filed 14.08.2000. Available: http://www.findpatent.ru/patent/219/2190002.html
  4. Bakirova, I. N., Galeva, E. I. (2012). Polyurethane sealant based on reclaimed sulphur-containing oligoether urethane. Encyclopedia of Chemical Engineer, 1, 19–22.
  5. Yamskii, V. A., Koftiuk, V. A., Poliakova, M. N., Vorobieva, L. G. (2008). Vliianie gidroksilsoderzhashchih oligomerov na svoistva dvuhkomponentnyh poliuretanovyh LKM. Lakokrasochnye materialy i ih primenenie, 6, 14–17.
  6. Park, H.-S., Kim, S.-R., Park, H.-J., Kwak, Y.-C., Hahm, H.-S., Kim, S.-K. (2003). Preparation and characterization of weather resistant silicone/acrylic resin coatings. Journal of Coatings Technology, 75 (1), 55–64. doi:10.1007/bf02697923
  7. McKeen, L. W. (2017). Elastomers and Rubbers. Permeability Properties of Plastics and Elastomers. Elsevier BV, 209–247. doi:10.1016/b978-0-323-50859-9.00010-5
  8. Decker, C., Masson, F., Schwalm, R. (2004). Weathering resistance of waterbased UV-cured polyurethane-acrylate coatings. Polymer Degradation and Stability, 83 (2), 309–320. doi:10.1016/s0141-3910(03)00276-3
  9. Thomson, T. (2004). Polyurethane Chemistry in Brief. Polyurethanes as Specialty Chemicals. CRC Press, 208. doi:10.1201/9781420039665.ch2
  10. Nistratov, A. V. (2014). Fiziko-himicheskie printsipy razrabotki retseptur i tehnologii kompozitsii na osnove oligotiolov, oligodienov i oligoefirov, ispol'zuemyh dlia polucheniia polimernyh materialov s uluchshennymi tehniko-ekspluatatsionnymi harakteristikami. Volgograd: Volgograd State Technical University, 48.
  11. GI Series / Both-end Hydroxyl Group-terminated Hydrogenated Polybutadiene. (2012). NIPPON SODA CO., LTD. Available: http://www.nippon-soda.co.jp/pb/list.html#gi. Last accessed: 20.01.2017.
  12. Zhang, J., Zao, W., Wang, L., Zhao, Y. (2013). Preparation and characterization of low-temperature hydrogenated nitrile butadiene rubber hybrid with hydrogen bonds for the sealing applications. Materials & Design, 52, 896–904. doi:10.1016/j.matdes.2013.06.040
  13. Ukrainskaia, S. I. (2013). Novye poliuretanovye elastomery s uluchshennymi molekuliarnymi harakteristikami na osnove oligobutadiendiolov. Volgograd: Volgograd State Technical University, 24.
  14. Ebnesajjad, S., Landrock, A. H. (2015). Characteristics of Adhesive Materials. Adhesives Technology Handbook. Elsevier BV, 84–159. doi:10.1016/b978-0-323-35595-7.00005-x
  15. Ebnesajjad, S. (2011). Characteristics of Adhesive Materials. Handbook of Adhesives and Surface Preparation. Elsevier BV, 137–183. doi:10.1016/b978-1-4377-4461-3.10008-2
  16. Shull, K. R. (2002). Contact mechanics. Adhesion Science and Engineering. Elsevier BV, 577–604. doi:10.1016/b978-0-444-51140-9.50042-1
  17. In: Gilbert, M. (2017). Brydson's Plastics Materials. Ed. 8. Elsevier BV, 859. doi:10.1016/c2014-0-02399-4
  18. Chen, A. T., Wojcik, R. T. (2010). Polyurethane coatings for metal and plastic substrates. Metal Finishing, 108 (11-12), 108–121. doi:10.1016/s0026-0576(10)80220-x
  19. Petrie, E. M. (2010). Resistance of adhesives, sealants, and coatings to corrosive environments. Metal Finishing, 108 (9), 38–40. doi:10.1016/s0026-0576(10)80187-4
  20. Zvonkina, I. J., Hilt, M. (2015). Tuning the mechanical performance and adhesion of polyurethane UV cured coatings by composition of acrylic reactive diluents. Progress in Organic Coatings, 89, 288–296. doi:10.1016/j.porgcoat.2015.08.006
  21. Zmihorska-Gotfryd, A. (2004). Coating compositions based on modified phenol-formaldehyde resin and urethane prepolymers. Progress in Organic Coatings, 49 (2), 109–114. doi:10.1016/j.porgcoat.2003.09.002
  22. Medvedev, G. V., Vaniev, M. A., Tuzhikov, O. O., Ryzhkina, A. A., Novakov, I. A. (2015). Development of polyurethane materials with increased weather resistance. Izvestia VSTU, 4 (159), 91–94.
  23. Pushkarev, Yu. N. (2012). Ebonitovye kompozitsii i pokrytiia na osnove oligobutadienov. Kharkiv: Burun Kniga, 172.
  24. Tager, A. A.; In: Asadskii, A. A. (2007). Fiziko-himiia polimerov. Ed. 4. Moscow: Nauchnyi mir, 576.

Published

2017-01-31

How to Cite

Сайтарли, С. В., Плаван, В. П., & Пушкарьов, Ю. М. (2017). Design of polymeric composite materials for coatings and sealants with increased weather resistance. Technology Audit and Production Reserves, 1(3(33), 9–14. https://doi.org/10.15587/2312-8372.2017.93383

Issue

Section

Chemical and Technological Systems: Original Research