Modeling of Ni2+ exchange on the strong acid ion-exchange resin and the organic-inorganic ion exchanger

Authors

  • Геннадий Геннадиевич Афонин National Technical University of Ukraine “Kyiv Polytechnic Institute”, 37 Peremogy ave., Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0003-0638-7915
  • Юрий Александрович Безносик National Technical University of Ukraine “Kyiv Polytechnic Institute”, 37 Peremogy ave., Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0001-7425-807X
  • Юлия Сергеевна Дзязько V. I. Vernadsky Institute of General and Inorganic Chemistry of the Ukrainian National Academy of Sciences, Pr. Vernadsky 32/34, 03680, Kyiv, Ukraine https://orcid.org/0000-0003-3599-9558
  • Людмила Николаевна Пономарева V. I. Vernadsky Institute of General and Inorganic Chemistry of the Ukrainian National Academy of Sciences, Pr. Vernadsky 32/34, 03680, Kyiv, Ukraine https://orcid.org/0000-0001-9488-9936

DOI:

https://doi.org/10.15587/2312-8372.2015.40640

Keywords:

ion exchange, water treatment, ions of nickel, calcium, magnesium, dynamic model

Abstract

Currently, for calculations of processes in the ion-exchange columns is used the model which require the use of parameters such as diffusion coefficients of the ions in solution and the ion exchanger, exchange capacity, selectivity coefficients, and particle size of the ion exchanger and bed height, velocity of the solution. The greatest difficulty is the definition of the diffusion coefficient of exchanging ions in the ion exchanger, as this parameter varies with the degree of substitution of the resin and is very dependent on the presence of other ions in solution. In this regard, the actual task is creating a formalized process model in a dynamic mode, which allows minimizing the number of parameters, eliminating the diffusion coefficients and selectivity. The aim of research is creation of a formalized model of ion exchange, taking into account only empirical parameters.

It is investigated the strongly acidic gel ion exchanger modified by aggregates of nanoparticles of zirconium hydrogen phosphate. In dynamic mode it was performed deionization of combined solution prepared in tap water, which contains ions of calcium, magnesium and nickel.

Under dynamic conditions it is investigated extract of nickel ions from the combined solution by using a strongly acidic gel cation exchange resin and the composite ion exchanger on its base, containing aggregates of nanoparticles of zirconium hydrogen phosphate. A model is proposed, which allows determining the time at which the capacity is reached before breakthrough for nickel ions. This model involves the use of only empirical parameters obtained in the investigation of ion exchange in a dynamic mode, reflecting the concentration of ions in the solid phase and does not require prior identification and selectivity coefficient of diffusion of sorbed ions, and the communication mode (external and internal diffusion or mixed).

Author Biographies

Геннадий Геннадиевич Афонин, National Technical University of Ukraine “Kyiv Polytechnic Institute”, 37 Peremogy ave., Kyiv, Ukraine, 03056

Department of Cybernetics of Chemical Technology Processes

Юрий Александрович Безносик, National Technical University of Ukraine “Kyiv Polytechnic Institute”, 37 Peremogy ave., Kyiv, Ukraine, 03056

Candidate of Technical Sciences, Associate Professor

Department of Cybernetics of Chemical Technology Processes

Юлия Сергеевна Дзязько, V. I. Vernadsky Institute of General and Inorganic Chemistry of the Ukrainian National Academy of Sciences, Pr. Vernadsky 32/34, 03680, Kyiv

Doctor of Chemical Sciences, Senior Researcher

Department of sorption & membrane technologies and materials

Людмила Николаевна Пономарева, V. I. Vernadsky Institute of General and Inorganic Chemistry of the Ukrainian National Academy of Sciences, Pr. Vernadsky 32/34, 03680, Kyiv

Candidates of Chemical Sciences

Department of sorption & membrane technologies and materials

References

  1. Spellman, F. R. Handbook of Water and Wastewater Treatment Plant Operations [Text] / F. R. Spellman. – CRC Press, 2003. – 521 p. doi:10.1201/9780203489833
  2. Dreizin, Y. Integrating large scale seawater desalination plants within Israel’s water supply system [Text] / Y. Dreizin, A. Tenne, D. Hoffman // Desalination. – 2008. – Vol. 220, № 1-3. – P. 132–149. doi:10.1016/j.desal.2007.01.028
  3. Al-Enezi, G. Ion Exchange Extraction of Heavy Metals from Wastewater Sludges[Text] / G. Al-Enezi, M. F. Hamoda, N. Fawzi // Journal of Environmental Science and Health, Part A. – 2004. – Vol. 39, № 2. – P. 455–464. doi:10.1081/ese-120027536
  4. Hubicki, Z. Application of Ion Exchange Methods in Recovery of Pd(II) Ions [Text] / Z. Hubicki, M. Wawrzkiewicz, A. Wowicz // Chem. Anal. (Warsaw). – 2008. – Vol. 53. – 759 p.
  5. Kammerer, J. Adsorption and Ion Exchange: Basic Principles and Their Application in Food Processing [Text] / J. Kammerer, R. Carle, D. R. Kammerer // Journal of Agricultural and Food Chemistry. – 2011. – Vol. 59, № 1. – P. 22–42. doi:10.1021/jf1032203
  6. Korkisch, J. Handbook of Ion Exchange Resins [Text] / J. Korkisch. – CRC Press, 1998. – Vol. 6. – 352 p.
  7. Helfferich, F. Ion Exchange [Text] / F. Helfferich. – New Vork, USA: Dover, 1995. – P. 250-420.
  8. Lin, S. H. Chromic acid recovery from waste acid solution by an ion exchange process: equilibrium and column ion exchange modeling [Text] / S. H. Lin, C. D. Kiang // Chemical Engineering Journal. – 2003. – Vol. 92, № 1-3. – P. 193–199. doi:10.1016/s1385-8947(02)00140-7
  9. Ben-Shebil, S. Fixed-bed ion exchange columns operating under non-equilibrium conditions: Estimation of mass transfer properties via non-equilibrium modeling [Text] / S. Ben-Shebil, A. Alkan-Sungur, A. R. Özdural // Reactive and Functional Polymers. – 2007. – Vol. 67, № 12. – P. 1540–1547. doi:10.1016/j.reactfunctpolym.2007.07.040
  10. Дзязько, Ю. С. Kинетика обмена Ni2+ на гибридных органо-неорганических ионитах: влияние пористой структуры полимера [Текст] / Ю. С. Дзязько, Л. Н. Пономарева, Ю. М. Вольфкович, В. Е. Сосенкин // Журнал физической химии. – 2012. – Т. 86, № 6. – С. 1019-1025.
  11. Dzyazko, Y. S. Ion-exchange resin modified with aggregated nanoparticles of zirconium hydrophosphate. Morphology and functional properties [Text] / Y. S. Dzyazko, L. N. Ponomaryova, Y. M. Volfkovich, V. V. Trachevskii, A. V. Palchik // Microporous and Mesoporous Materials. – 2014. – Vol. 198. – P. 55–62. doi:10.1016/j.micromeso.2014.07.010
  12. Дзязько, Ю. С. Органо-неорганичские иониты для извлечения токсичных примесей из водных растворов [Текст] / Ю. С. Дзязько, Л. Н. Пономарева, В. Н. Беляков, Ю. М. Вольфкович, В. Е. Сосенкин // Сорбционные и хроматографические процессы. - 2012. - Т. 12, № 4. - С. 554-562.
  13. Дзязько, Ю. С. Взаимодействие сорбированных ионов Ni(II) с аморфным гидрофосфатом циркония [Текст] / Ю. С. Дзязько, В. В. Трачевский, Л. М. Рождественская, С. Л. Василюк, В. Н. Беляков // Журнал физической химии.- 2013. - Т. 87, № 5. -С. 857-862. doi:10.7868/s0044453713050063
  14. Srivastava, V. C. Competitive adsorption of cadmium(II) and nickel(II) metal ions from aqueous solution onto rice husk ash [Text] / V. C. Srivastava, I. D. Mall, I. M. Mishra // Chemical Engineering and Processing: Process Intensification. – 2009. – Vol. 48, № 1. – P. 370–379. doi:10.1016/j.cep.2008.05.001

Published

2015-04-02

How to Cite

Афонин, Г. Г., Безносик, Ю. А., Дзязько, Ю. С., & Пономарева, Л. Н. (2015). Modeling of Ni2+ exchange on the strong acid ion-exchange resin and the organic-inorganic ion exchanger. Technology Audit and Production Reserves, 2(4(22), 63–67. https://doi.org/10.15587/2312-8372.2015.40640

Issue

Section

Technologies of food, light and chemical industry