Using synthetic jet generators in the systems of control of separated flows of turbomachines

Authors

DOI:

https://doi.org/10.15587/2312-8372.2015.46933

Keywords:

generators of synthetic jets, pulse-periodic systems, blade rows, separated flows, moving element

Abstract

The article presents the features of the use of pulse-periodic systems, which are presented in the form of generators of synthetic jets and can be used to eliminate flow separation of blade rows of turbomachines.

It is known that the control system of separated flows characterized by greater efficiency in the modes of operation of stages of turbomachines that are close to resonance. Therefore, ensuring the flexibility of the control system of separated flows and the possibility of its adjustment under certain operating conditions of stages of turbomachines, greatly expand the range of effectiveness of the latter. Such flexibility of the control system of separated flow can be achieved by using a moving element, which is used as a vibration exciter. With moving parts can configure the system to the required frequency range, the moving element can also play the role of a diagnostic element of the system.

It should be noted that the integral separated wake on the stages of axial turbomachines has a requirement for control method for the presence of feedback, which in turn needs a shaping procedure and settings.

Adjusting the natural frequency of the control system of separated flows will provide expansion of its range of effective work, as well as increase the efficiency of stages of turbomachines in general. The study results can be used for the selection of configuration of moving parts of repetitively pulsed systems.

Author Biographies

Микола Юрійович Богданов, National Aviation University, Kosmonavta Komarova 1, Kyiv, Ukraine, 03058

Senior teacher

Aviation engines department

Федір Іванович Кірчу, National Aviation University, Kosmonavta Komarova 1, Kyiv, Ukraine, 03058

Candidate of Technical Sciences, Associate Professor

Aviation engines department

References

  1. Kweder, J., Zeune, C. H., Geiger, J., Lowery, A. D., Smith, J. E. (2014). Experimental Evaluation of an Internally Passively Pressurized Circulation Control Propeller. Journal of Aerodynamics, Vol. 2014, 1–10. doi:10.1155/2014/834132
  2. Schlichting, H. (1969). Boundary-layer theory. Moscow: Nauka, 713.
  3. Shafer, D., Ghee, T. (2005, June 6). Active and Passive Flow Control over the Flight Deck of Small Naval Vessels. 35th AIAA Fluid Dynamics Conference and Exhibit. American Institute of Aeronautics and Astronautics. Available: http://doi.org/10.2514/6.2005-5265
  4. Lupea, I. (2012). Considerations on the Helmholtz resonator simulation and experiment. Proceedings of the Romanian academy, Series A, Vol. 12,3. The Publishing House Proceedings of the Romanian Academy, 118–124.
  5. Shimizu, T., Hori, D., Kitamura, K., Daimon, Y., Oyama, A. (2011, June 27). Slit Resonator Design and Damping Estimation in Linear and Non-linear Ranges. 41st AIAA Fluid Dynamics Conference and Exhibit. American Institute of Aeronautics and Astronautics. Available: http://dx.doi.org/10.2514/6.2011-3261
  6. Kinsler, L. E. (2000). Fundamentals of Acoustics. Chaps 10. New York: John Wiley & Sons, 272–301.
  7. Bohdanov, M. Yu., Yasynitskyi, E. P., Okhmakevych, V. M., Nikitina, V. M., Kinashchuk, M. I. (2013). Do pytannia zastosuvannia pasyvnykh metodiv upravlinnia pohranychnym sharom dlia zmenshennia vtorynnykh vtrat v lopatkovykh vintsiakh osovoho kompresora. Materialy XI mizhnarodnoi naukovo-tekhnichnoi konferentsii „AVIA-2013”, Vol. 3, 14.5–14.8.
  8. Abzalilov, D. F., Valitov, N. B., Il'inskii, N. B. (2009). Modelirovanie ustroistv aktivnogo upravleniia pogranichnym sloem, predotvrashchaiushchih otryva potoka na krylovyh profiliah. Materialy XVI Mezhdunarodnoi konferentsii po vychislitel'noi mehanike i sovremennym prikladnym programmnym sistemam (VMSPPS2009), Alushta, 45–47.
  9. Golovanov, A. N. (2006). Vliianie akusticheskih vozmushchenii na svobodno-konvektivnogo techeniia. Prikladnaia mehanika i tehnicheskaia fizika, Vol. 47, № 5, 27–33.
  10. Zanin, B. Yu., Zverkov, I. D., Kozlov, V. V., Pavlenko, A. M. (2007). O novyh metodah upravleniia dozvukovymi otryvnymi techeniiami. Vestnik Novosibirskogo gosudarstvennogo universiteta, Vol. 2,1, 10–18.
  11. Collins, F. G., Zelenevits, J. (1975, March). Influence of Sound upon Separated Flow over Wings. AIAA Journal, Vol. 13, № 3, 408–410. doi:10.2514/3.49717
  12. Patterson, C. (2011). Evaluation of Pulsed & Steady Blowing Flow Control in a Slotted Leading Edge Configuration. School of Engineering, Tufts University Medford, 53.
  13. Shafer, D. M. (2014). Active and passive flow control over the flight deck of small naval vessels. Scientific World Journal. Available: http://www.hindawi.com/journals/tswj/
  14. Rullán, J. M. (2014).Flow control over a circular arc airfoil. Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE In Engineering Mechanics. Blacksburg, Virginia: Virginia Polytechnic Institute and State University. Available: http://scholar.lib.vt.edu/theses/available/etd-10222004-132351/unrestricted/thesis_Jose_Rullan.pdf
  15. Levichev, O. F. (2013). Kategoriia sinteza v nauke, filosofii i obrazovanii. Elektronnyi nauchnyi zhurnal, 6. Available: http://grani.agni-age.net/articles12/4914.htm
  16. Lebedev, S. A. (2010). Urovni nauchnogo znaniia. Voprosy filosofii, 2, 1–8.
  17. Kornilov, V. I., Boiko, A. V. (2010). Upravlenie turbulentnym pogranichnym sloem passivnymi i aktivnymi metodami. Uspehi i problemy. International Conference on the Methods of Aerophysical Research – ICMAR, 1–9.
  18. Hwang, D. (1997, January 6). A proof of concept experiment for reducing skin friction by using a micro-blowing technique. 35th Aerospace Sciences Meeting and Exhibit. American Institute of Aeronautics and Astronautics. Available: http://doi.org/10.2514/6.1997-546
  19. Danilov, D. S., Lipatov, I. I., Tolkachev, G. Yu. (2010). Samoindutsirovannyi otryv laminarnogo pogranichnogo sloia i protsessy viazko-neviazkogo vzaimodeistviia nad poristoi poverhnost'iu. Pis'ma v ZhTF, Vol. 36, № 19, 72–75.
  20. Valitov, R. A. (2009). Primenenie ustroistv aktivnogo upravleniia pogranichnym sloem s uchetom energeticheskih zatrat dlia predotvrashcheniia otryva potoka. Trudy matematicheskogo tsentra imeni N. I. Lobachevskogo : Materialy Vos'moi molodezhnoi nauchnoi shkoly-konferentsii «Lobachevskie chteniia – 2009», Vol. 39, 147–148.
  21. Sheplak, M., Cattafesta, L., Nishida, T., Horowitz, S. B.; assignee: University of Florida. (2004, August 24). Electromechanical acoustic liner. Patent U.S. 6782109. Filed 3 April 2001. Available: https://www.google.com.ua/patents/US6782109?dq=Electromechanical+acoustic+liner&hl=ru&sa=X&ved=0CBsQ6AEwAGoVChMIr6C5j-3axgIVwnE-Ch2N6Qko
  22. Ingard, U. (1999). Notes On Duct Attenuators (N4). NE: Kittery Point. Available: http://www.ingard.com/
  23. Liu, F., Horowitz, S., Nishida, T., Cattafesta, L., Sheplak, M. (2007). A multiple degree of freedom electromechanical Helmholtz resonator. The Journal of the Acoustical Society of America, Vol. 122, № 1, 291–301. doi:10.1121/1.2735116.
  24. Liu, F., Horowitz, S. B., Cattafesta, L., Sheplak, M. (2003). A Tunable Electromechanical Helmholtz Resonator. 9th AIAA/CEAS Aeroacoustics Conference and Exhibit (Hilton Head, South Carolina). AIAA Paper 2003-3145. Available: http://www.researchgate.net/publication/233532493_A_Tunable_Electromechanical_Helmholtz_Resonator
  25. McKee, R. J., Broerman, E. L. (2009). Acoustics in Pumping Systems. 25th International Pump Users Symposium, February 23-26, 2009, Houston, TX. Available: http://turbolab.tamu.edu/uploads/files/papers/p25/P25-Tut1.pdf
  26. Loitsianskii, L. G. (1987). Mehanika zhidkosti i gaza. M.: Nauka, 840.
  27. Fischer, F. A. (1955). Fundamentals of Electroacoustics. New York: Interscience Publishers Inc., 186.
  28. Blackstock, D. T. (2000). Fundamental of Physical Acoustics. New York: John Wiley & Sons, 560.
  29. Prasad, S. A., Gallas, Q., Horowitz, S. B., Homeijer, B. D., Sankar, B. V., Cattafesta, L. N., Sheplak, M. (2006, October). Analytical Electroacoustic Model of a Piezoelectric Composite Circular Plate. AIAA Journal, Vol. 44, № 10, 2311–2318. doi:10.2514/1.19855

Published

2015-07-23

How to Cite

Богданов, М. Ю., & Кірчу, Ф. І. (2015). Using synthetic jet generators in the systems of control of separated flows of turbomachines. Technology Audit and Production Reserves, 4(3(24), 13–20. https://doi.org/10.15587/2312-8372.2015.46933

Issue

Section

Systems and Control Processes: Original Research