Is hyperuricosuria really a risk factor for calcium oxalate stone formation?

W.L. Strohmaier 1,
B. Wrobel-Tenzer 2

1 Department of Urology and Paediatric Urology, Regiomed-Klinikum Coburg, Coburg, Germany; Medical School Regiomed and Academic Hospital of the University of Split, Croatia, e-mail: walter.strohmaier@regiomed-kliniken.de
2 Urologisches Zentrum Waiblingen, Germany, e-mail: beate.wrobel@gmx.de

SUMMARY
In the seventies of the last century the term hyperuricosuric calcium oxalate (CaOx) urolithiasis has been coined. Allopurinol significantly decreased the recurrence in CaOx stone formers. Nevertheless, the role of hyperuricosuria has been questioned. Other mechanisms could have decreased the risk for recurrence. The underlying mechanisms are not clear. All these studies have been performed with only a limited number of patients. We studied n=2,480 consecutive patients with CaOx stones. For stone analysis, x-ray diffraction was used. The following parameters were examined in all patients: age, sex, body mass index (BMI), arterial blood pressure, stone episodes, diabetes mellitus; blood: creatinine, glucose, uric acid, calcium, sodium and potassium; urine: pH, volume, calcium, uric acid, citrate, ammonia and urea. According to the uric acid excretion (UAE), patients were divided into two groups: 1. UAE > 4 mmol/d (hyperuricosuria), 2. UAE ≤ 4 mmol/d (normouricosuria). We observed significant correlations between UAE and sex, age, BMI, blood pressure, serum values of creatinine, sodium, urine volume, urine levels of calcium, citrate, urea and ammonia as well as serum calcium. No significant correlations were seen to the stone frequency (number of stone episodes), serum potassium and urine pH. In group 1 (n=741), there were 87.2% male and 12.8% female patients; in group 2 (n=1,739), the ratio was 60.6:39.4%. In the hyperuricosuric group, there were significantly more males than in the normouricosuric collective. Hyperuricosuric subjects had a higher BMI, higher blood levels of uric acid and glucose, a higher diuresis, a higher excretion of calcium, urea and ammonium, but a lower excretion of citrate than normouricosuric patients. All the other parameters did not show any significant differences. Especially the number of stone episodes was not different. We concluded that hyperuricosuria went along with many other risk factors for CaOx stone formation, but was not associated with an increased risk for recurrence. Therefore, UAE is not a prognostic marker in CaOx urolithiasis. It is unlikely that hyperuricosuria is a real risk factor for CaOx stone formation and hyperuricosuric CaOx urolithiasis is an own entity.

Keywords:
calcium oxalate, hyperuricosuria, urolithiasis, recurrence rate, renal stone disease

SUMMARY

In the seventies of the last century the term hyperuricosuric calcium oxalate (CaOx) urolithiasis has been coined. Allopurinol significantly decreased the recurrence in CaOx stone formers. Nevertheless, the role of hyperuricosuria has been questioned. Other mechanisms could have decreased the risk for recurrence. The underlying mechanisms are not clear. All these studies have been performed with only a limited number of patients. We studied n=2,480 consecutive patients with CaOx stones. For stone analysis, x-ray diffraction was used. The following parameters were examined in all patients: age, sex, body mass index (BMI), arterial blood pressure, stone episodes, diabetes mellitus; blood: creatinine, glucose, uric acid, calcium, sodium and potassium; urine: pH, volume, calcium, uric acid, citrate, ammonia and urea. According to the uric acid excretion (UAE), patients were divided into two groups: 1. UAE > 4 mmol/d (hyperuricosuria), 2. UAE ≤ 4 mmol/d (normouricosuria). We observed significant correlations between UAE and sex, age, BMI, blood pressure, serum values of creatinine, sodium, urine volume, urine levels of calcium, citrate, urea and ammonia as well as serum calcium. No significant correlations were seen to the stone frequency (number of stone episodes), serum potassium and urine pH. In group 1 (n=741), there were 87.2% male and 12.8% female patients; in group 2 (n=1,739), the ratio was 60.6:39.4%. In the hyperuricosuric group, there were significantly more males than in the normouricosuric collective. Hyperuricosuric subjects had a higher BMI, higher blood levels of uric acid and glucose, a higher diuresis, a higher excretion of calcium, urea and ammonium, but a lower excretion of citrate than normouricosuric patients. All the other parameters did not show any significant differences. Especially the number of stone episodes was not different. We concluded that hyperuricosuria went along with many other risk factors for CaOx stone formation, but was not associated with an increased risk for recurrence. Therefore, UAE is not a prognostic marker in CaOx urolithiasis. It is unlikely that hyperuricosuria is a real risk factor for CaOx stone formation and hyperuricosuric CaOx urolithiasis is an own entity.

REФЕРАТ

Чи є гіперурикоzuрия ризик фактором формування кальцієво-оксалатних конкрементів? Штромайєр В.Л., Врубель-Тенцер Б. Термін «гіперурикоzuрична кальцієво-оксалатна сечокам'яна хворoba» було створено у
INTRODUCTION

More than seventy years ago, Smith and coworkers described hyperuricosuria in calcium stone formers (Smith et al., 1969). Since that time, several other authors reported hyperuricosuria as a risk factor for calcium oxalate (CaOx) stone formation and coined the term hyperuricosuric calcium urolithiasis (Coe, 1978; Pak et al., 1980). Experimental studies revealed heterogeneous nucleation (Pak and Arnold, 1975), removing inhibitors (Pak et al., 1977), and salting out (Grover et al., 1993) as potential mechanisms of action. Consequently, hyperuricosuric CaOx stone formers (CaOxSF) were treated with allopurinol and alkaline citrate (Coe and Raisen, 1973; Pak and Peterson, 1986). In one randomized prospective study, it has been shown that allopurinol could decrease the recurrence rate in hyperuricosuric CaOxSF (Ettinger et al., 1986). Nevertheless, the role of hyperuricosuria has been questioned only several years later by the same working group (Ettinger, 1989). Possibly, other mechanisms than lowering uric acid excretion (UAE) were responsible for the decreased recurrence rate. The role of hyperuricosuria as a risk factor for calcium stone disease has been questioned later by Curhan and coworkers as they found that the risk of being a stone former decreased with increasing UAE in men (Curhan et al., 2001). In a recent review the role of hyperuricosuria has been challenged again (Moe y Xu, 2018). One problem is that all studies on hyperuricosuric CaOxSF have been performed with only a limited number of patients. Therefore, we examined the role of hyperuricosuria in large series of CaOxSF with complete metabolic evaluation.

MATERIALS AND METHODS

A total of 2,480 consecutive patients with CaOx stones treated in the Department of Urology and Paediatric Urology at the Regiomed-Klinikum Coburg, Germany were studied. Patients with primary hyperparathyroidism, hyperoxaluria and distal renal tubular acidosis were excluded.

Stone analysis was performed via polarization microscopy and x-ray diffraction.

A detailed history including age, sex, the number of stone episodes and the presence of diabete mellitus was recorded. Arterial blood pressure (RR) was measured according to the recommendations of the World Hypertension League sitting after 5 minutes at rest. The body mass index (BMI) was assessed as well.

The following biochemical parameters were determined in all patients: urine pH profiles on three consecutive days in the morning (fasting), noon (postprandial) and evening (postprandial). For urine pH measurements, dipsticks, which allowed pH measuring in 0.1 steps (Madaus GmbH, Cologne, Germany), were used. The mean urinary pH was calculated in every patient.

Blood was drawn to measure creatinin (Jaffé reaction, Dade Behring Marburg, Germany), potassium (atomic absorption), calcium (indirect ion sensitive electrode), glucose (postprandial; hexokinase-glucose-6-phosphat dehydrogenase method, Flex™ Siemens Healthcare Diagnostics Newark, DE, USA) and uric acid (modified uricase method, Dade
A 24 h-urine specimen was collected to determine the excretion of citrate (citrate lyase method, Boehringer Mannheim, Germany), creatinine (Jaffé reaction, Dade Behring Marburg, Germany), calcium (indirect ion sensitive electrode), uric acid (modified uricase method, Dade Behring Marburg, Germany), ammonia (modified glutamate dehydrogenase method using NADPH, test kit Ammonia Flex™, Dade Int., Newark, DE, USA) and urea (urease-glutamate dehydrogenase, Dade Behring Marburg, Germany) as markers for protein intake.

According to the UAE patients were divided into two groups: 1. UAE > 4 mmol/d (hyperuricosuria), 2. UAE ≤ 4 mmol/d (normouricosuria).

For statistical analysis, means and standard deviations were calculated. Significant differences (p<0.05) were assessed by Student’s t-test in case of Gaussian distribution and equal variance, otherwise the non-parametric Mann-Whitney test was used. Furthermore, corelations were calculated (Spearman r).

RESULTS AND DISCUSSION

The study population (n=2,480) consisted of 1,949 males (78.6%) and 531 females (21.4%). There were 347 patients with diabetes mellitus (14.0%).

We observed significant correlations between UAE and sex, age, BMI, blood pressure, serum values of creatinine, sodium, urine volume, urine levels of calcium, citrate, urea and ammonia (p<0.0001) as well as serum calcium (p=0.023). No significant correlations were seen to the stone frequency (number of stone episodes), serum potassium and urine pH.

In group 1 (n=741; 29.9%), there were 87.2% male and 12.8% female patients; in group 2 (n=1,739; 70.1%), the ratio was 60.6:39.4 (Fig.).

In the hyperuricosuric group, there were significantly (p<0.0001) more males than in the normouricosuric collective. Hyperuricosuric subjects had a higher BMI (Table 1), higher blood levels of uric acid and glucose (Table 2), a higher diuresis, a higher excretion of calcium, urea and ammonium, but a lower excretion of citrate than normouricosuric patients (Table 3). All the other parameters did not show any significant differences. Especially the number of stone episodes was not different.

Our results showed that hyperuricosuria correlated with many metabolic parameters and stone risk factors in CaOx stone formers. 29.9% of our CaOxSF were hyperuricosuric. Similar numbers have been reported already previously (Arowojolu and Goldfarb, 2014; Coe, 1978). Hyperuricosuria was associated with age, male sex and higher BMI. This in accordance with previous reports (Del Valle et al., 2012; Otto et al., 2017; Wang et al., 2018). Hyperuricosuric SF also showed a higher 24-h urine volume, ammonia, and urea excretion. These findings go along with a study on the composition of 24-h urine in diabetic and non-diabetic stone formers (Hartman et al., 2015).
TABLE 1. General parameters (means ± standard deviations) in hyperuricosuric (group 1) and normouricosuric (group 2) CaOxSF

<table>
<thead>
<tr>
<th></th>
<th>Group 1</th>
<th>Group 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>49.7±12.7</td>
<td>53.7±15.4</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>30.1±5.7*</td>
<td>27.8±4.9*</td>
</tr>
<tr>
<td>Diab. mellitus (%)</td>
<td>14.4</td>
<td>13.9</td>
</tr>
<tr>
<td>Stone episodes (n)</td>
<td>1.8±1.4</td>
<td>1.8±1.2</td>
</tr>
<tr>
<td>BP sys (mm Hg)</td>
<td>138±15</td>
<td>136±15</td>
</tr>
<tr>
<td>BP dia (mm Hg)</td>
<td>83±8</td>
<td>81±8</td>
</tr>
</tbody>
</table>

*Significant differences: *p*<0.0001.*

TABLE 2. Blood parameters (means ± standard deviations) in hyperuricosuric (group 1) and normouricosuric (group 2) CaOxSF

<table>
<thead>
<tr>
<th></th>
<th>Group 1</th>
<th>Group 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creatinine (mg/dl)</td>
<td>1.1±0.3</td>
<td>1.0±0.3</td>
</tr>
<tr>
<td>Sodium (mmol/l)</td>
<td>140±6</td>
<td>140±4</td>
</tr>
<tr>
<td>Potassium (mmol/l)</td>
<td>4.1±0.4</td>
<td>4.1±0.4</td>
</tr>
<tr>
<td>Calcium (mmol/l)</td>
<td>4.7±0.3</td>
<td>4.7±0.3</td>
</tr>
<tr>
<td>Uric acid (mg/dl)</td>
<td>5.2±1.0*</td>
<td>2.8±0.8</td>
</tr>
<tr>
<td>Glucose (mg/dl)</td>
<td>125±42*</td>
<td>118±40</td>
</tr>
</tbody>
</table>

*Significant differences: *p*<0.0001.*

TABLE 3. Urine parameters (means ± standard deviations) in hyperuricosuric (group 1) and normouricosuric (group 2) CaOxSF

<table>
<thead>
<tr>
<th></th>
<th>Group 1</th>
<th>Group 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>6.1±0.4</td>
<td>6.2±0.4</td>
</tr>
<tr>
<td>Volume (l/d)</td>
<td>3.0±1.4*</td>
<td>2.5±1.3</td>
</tr>
<tr>
<td>Calcium (mmol/d)</td>
<td>6.8±3.3*</td>
<td>5.1±2.9</td>
</tr>
<tr>
<td>Uric acid (mmol/d)</td>
<td>5.2±1.1</td>
<td>5.2±1.1</td>
</tr>
<tr>
<td>Citrate (mmol/d)</td>
<td>2.5±1.6*</td>
<td>2.8±0.8</td>
</tr>
<tr>
<td>Urea (mmol/d)</td>
<td>490±142*</td>
<td>304±119</td>
</tr>
<tr>
<td>Ammonia (mmol/d)</td>
<td>57±37*</td>
<td>38±39</td>
</tr>
</tbody>
</table>

*Significant differences: *p*<0.0001.*
CONCLUSION

All these findings demonstrate that UAE is not an independent risk factor for CaOx stone formation. Conclusively, there was no correlation to the stone frequency and no association with an increased risk for recurrence. The number of stone episodes was comparable between hyperuricosuric and normouricosuric CaOxSF. Therefore, UAE is not a prognostic marker in CaOx urolithiasis. It is questionable whether hyperuricosuria is a real risk factor for CaOx stone formation. Our conclusions which are drawn from a large series of CaOxSF confirm the assumptions previously drawn from theoretical considerations and smaller clinical series (Ettinger, 1989). Although a linear relationship between uric acid excretion and the stone risk index FRPCaOx has been demonstrated (Pak et al., 1977; Pak et al., 1978), this did not result in higher real world stone formation as the stone frequency did not correlate with the UAE highlighting again that surrogate parameters as stone risk indices to not necessarily reflect the real stone events.

STATEMENTS AND DECLARATIONS

The authors have no competing interests to declare that are relevant to the content of this article. The authors did not receive support from any organization for the submitted work.

This is an observational study. According to the laws in Germany, a vote of an Ethic Committee is not required as it is a retrospective study based on completely anonymized data that cannot be traced back to individual patients. It was exempt from the Regiomed-Kliniken Institutional Review board as it used only de-identified patient data.

ACKNOWLEDGEMENT

We thank Dr. Maxim Kovalkov for translating the Summary and the Key Words into Ukrainian.

REFERENCES

hyperuricosuric calcium urolithiasis. The American Journal of Medicine, 65(4), 593-599. https://doi.org/10.1016/0002-9343(78)90846-x

