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APPLICATION OF EQUATIONS OF THE PLASTICITY THEORY
IN THE PROCESSES OF PROSESSING POROUS BODY PRESSURE

In the article the results of the application of the equations of the plasticity theory in the
processes of processing of the powder body pressure such as a porous sleeve were pre-
sented. The mathematical model describing the plastic behavior of a porous body is pre-
ferred. For this purpose, the hypothesis on the use of the Beltram plastic flow in the con-
struction of a model of the plastic behavior of the porous body was used, diagrams of
tangential and normal stresses and the contact surface of the body were constructed. On
the basis of the Beltram hypothesis, the plasticity condition in which, the three-
dimensional space of principal stresses, the equation is an ellipsoid. An equation of plas-
tic friction of a porous powder body during re-compaction is obtained. In the case when
the components of the stress deviator are known, when using certain boundary condi-
tions, it becomes possible to find the components of the stress tensors. Testing of the pro-
cesses of deformation of a porous body was carried out on cylindrical powder samples
with dimensions DxH = 10x10 mm. after primary pressing, their relative density was
p = 0.68. As a result of the experimental tests of repeated pressing of the sleeve, a graph
of the dependence of the yield strength of the iron-based material on the relative density
of the sleeve was built, which is in good agreement with the calculated data. Further tests
carried out on the porous bushings are further compacted by pulling. The zones of plastic
deformation in the powder sleeve are determined. Diagrams of normal or and tangential
Trx Stresses of the tangent to the contact surface along the r = const line are constructed.
The proposed method for determining the stresses and plastic behavior of iron-based po-
rous powder bushings can be used for other stationary methods of deformation of powder
materials (rolling, extrusion, drawing, etc.).

Keywords: body, sleeve, theory of plasticity, stress state, normal stress, shear stress, plas-
tic flow.

Pycmamosa C.M., Mameooe A.T. 3acmocysanns pienans meopii naiacmuynocmi no-
pucmomy miny ¢ npouecax oopooku muckom. Y cmammi npeocmaeieni pe3yiomamu
3aCMOCY8AHHsL PIBHAHL MEOpii naiacmudHocmi 00 npoyecie 0OpoOKU MUCKOM HOPOUIKO-
6020 mina muny nopucmoi emyiaxku. Biooano nepesazy mamemamuunii mooeni, wo onu-
Cye NAACMUYHY ROBEJIHKY NOPUCIO20 Mina. 3 Yier Memoio GUKOPUCMAHA 2inomesa npo
sacmocysanus naacmuynoi meuii Berompama npu no6y00si mooeni niacmuyHol noeeoi-
HKU NOPUCMOo2o mina, no6yo0o8awni entopu OOMU4HOL I HOPMATbHOI HANpPYe, KOHMAKMHOL
noeepxui mina. Ha ocnogi cinomesu benompama eupasiceno ymogy niacmuyHocmi, 8 AKiil
6 MPUBUMIDHOMY NPOCTOPI 20I06HUX HANPYE PiHANHA € enincoidom. OmpumaHno pieHsiH-
HA NIACMUYHOI meyli NOPUCmo20 NOPOUWKOB8020 MIAA NPU NOBMOPHOMY YWiNbHeHHI. [N
BUNAOKY, KONU 8i0OMI KOMNOHEeHMU Oeglamopa Hanpye, npu 6UKOPUCMANHI 0esKUxX epa-
HUYHUX YMO8 CINAE MONCIUBUM 3HAXOONCEHH KOMNOHEHMI8 men3opie nanpye. Bunpoby-
BaHHS Npoyecie 0epopMyB8aHHs NOPUCHO20 MINA NPOBEOEHO HA YUTTHOPUUHUX NOPOUKO-
sux 3paskax posmipamu DxH = 10510 mm. ITicis nepsunnozo npecysanms ix 6iOHOCHA
winvHicms cmanosuna p = 0,68. B pe3ynomami excnepumeHmaivhux unpody8ans no-
BMOPHO2O NPECYBAHHS BMYAKU NOOYOOBAHULL 2pApIK 3a1edACHOCII Medici meKyYyocmi Ma-
mepiany Ha OCHO8I 3ani3a 8i0 GIOHOCHOI WINLHOCMI 8MYIKU, AKUU 000pe Y3200HCYIOMbCS
3 po3paxyukosumu oanumu. IIposedeni sunpodOy8anHs nOpUCMUX 8MyjaoK 8 YMo8ax 0o-
0amK06020 YWINbHEHHs WSXOM Npomseyeants. Busnaveno 3onu niacmuunux oepopma-
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yiu 8 nopowxosii emyayi. [106y0o6ano enopu HOPMATLHUX O I OOMUUHUX Tyx HANDY2S
00MUYHOI HA KOHMAKIMHY NOGEPXHIO Y30062iC T = COonSt Ninii. 3anpononosanuti Memoo 6u-
3HAYeHHA Hanpye i NIACIMUYHOI N08edIHKU NOPUCUX NOPOUIKOBUX 8MYIOK HA OCHOGI 3a-
ni3a Modice Oymu 8UKOPUCMANULL NPU THUUX CIMAYIOHAPHUX Memodax 0eghopmy8ants no-
POWKOBUX Mamepianieé (npokamyi, eU0AI08anH i, 60104iHHA I TH.). Pe3zyriomamu noemo-
DPHO20 0eqhopMyB8aHHs CHedeHUX NOPUCIUX 8MYJIOK HA OCHOSI 3434 NOKA3AIU iCIMOMHe
SMIYHEHHs Mamepiany nicis 000amKo8oi 00pooOKuU.

Knrouogi cnoea: mino, emynxa, meopis niaCmuyHOCmi, HANPYICEHUli CIaH, HOPMAalbHA
Hanpyea, 00Mmu4Ha Hanpyaa, R1ACmMu4Ha medis.
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Description of the problem. The operations of shaping and hardening - calibration, which are
promising directions in the powder metallurgy, are based on plastic deformation of powder blanks.
This, in many cases, by reducing the residual porosity, strengthening the base of the material and in-
creasing the surface finish of the part, can significantly improve the performance of materials. Howev-
er, for the correct execution of the processes of pressure treatment of powder materials in the process
of plastic shaping, it is necessary to monitor their behavior. This, in turn, makes it necessary to build a
model describing the results of experiments carried out in a plastic porous body. The main distinctive
feature of the plastic deformation of the strength of the body is the presence of permanent defor-
mation. This is mainly reflected in Poisson’s ratio. The complexity of the problem posed also lies in
the fact that in the process of plastic deformation, the mechanical strengthening of a porous body is
caused by both a change in porosity and a change in the basic strength of the material [1].

Analysis of recent research and publications. To describe the plastic behavior of a porous
body, first of all it is necessary to accept the limiting state condition and the material plasticity condition.

In the general case of the stress state, the plasticity condition is described as follows

f(c.,S)=0, )

ij?
where f (o) Iis equation of hypersurface plasticity; o; — component of the stress tensor; S is
the relative density.
In case of plastic deformation, the condition for detecting irreversible plastic deformation can be
written as follows:

d,
#0, 2
do, @)

where o, —o, % J, the ratio is the average stress related to the first invariant of the stress tensor.

Therefore, the plasticity condition for compressible bodies must include the first invariant of the
stress tensor J or the average stress, then the plasticity condition of the compressible body has the fol-
lowing form:

f(3,3;8)=0 or f(o0,J;)=0, (3)
where J; is the second invariant of the stress tensor deviator.

There are some models that, giving approximate description of the plastic behavior of a porous
body in one or another step [2-6]. The more complete model is the model of a hardened porous body
proposed in [6]. Here, the state of the medium is characterized by two hardening parameters - the cur-
rent porosity €and the intensity of deformations of the material base - y. In some cases, it is difficult to
determine the value of - y Therefore, the porous body models proposed in [2-4] are of great interests,
in which only one parameter is included in the plasticity condition - the current porosity or the relative
density of the body. As shown in [2-4], this simplification does not lead to a significant discrepancy
between the information obtained theoretically and experimentally.

In our study, we used the hypothesis of the application of the Beltram plastic state when con-
structing a model of the plastic behavior of a porous body [7]. On the basis of this hypothesis, the ma-
terial transforms into a plastic state when the total specific deformation energy reaches a certain limit-
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ing value. In this case, it is proposed that Hooke’s law is valid before the onset of plasticity.
Based on the Beltram hypothesis, the plasticity condition is expressed as follows:

§(1+ wo! +3(1-2u)o5 =Y?, (4)

where o; =(3J§)% is the intensity of stress; Y is the current yield stress of the porous body in
the state of linear stress.

In equation (4) Y and g are functions of the relative density of the body.

In the three-dimensional space of the principal stresses, equation (4) is an Ellersoid. The law be-
tween the rates of deformations and stresses induced by the yield surface is expressed as follows:

E; =24|(1+u)o; —5;3uc, |, (5)
where Eij is strain rate tensor component; J; — Kronecker symbol.
2p =i (6)
G;
here
H, =[ J672+ 1) ||(E; - 5,E,)(E, —5,E,) (7)
is the intensity of the deformation rate, and
Eo :1/35le"[] €)

is the rate of volumetric deformation.
From relation (5), taking into account (6), the equation of the relationship between the compo-

nents of the stress deviator and the strain rate deviator is derived:
lo

R ?

where S; =0y — 6,0, are the components of stress deviator; kij = Eij —0; — components of the
strain rate deviator from relation (5), the following equations can be derived:
5= 5, (10)
1-2u
E
here ¢ =—2=.
¢ m

Let’s write the expression (4) in the following form

Y? :{2(14—#)4— 3 }aiz .

1-2u
From here
[ 1
O-I = Y > = a)Y y (11)
g(1+ )+ 3
3o 710
where
l 1
2 3¢
— A+ w)+
3 1-2u
We express the equation of plastic flow of a porous body (9) in the following form
ic = = 1 Eij . (13)
1+ H,

If the components of the stress deviator are known, then expressing the differential equations by
balancing oy, ¢ = 0 and using some boundary conditions, one can find the components of the stress
tensors. We used the considered model of a plastic porous body to determine the stresses during de-
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forming broaching of bushings made of iron powder of the PZh2M3 grade. The deforming broach is a
stationary process of pressure treatment of powder materials, since at any point the stress-strain state
of the body is determined by its coordinates and does not depend on time.

Purpose of the article. A preliminary test of powder cylindrical samples with dimensions
DxH = 10x10 mm was carried out. Before testing, the relative density of the samples was p = 0.68.

Compression tests were carried out on a GP-250 press. To lubricate the contact surfaces, fluoro-
plastic gaskets were used as a lubricant. In the process of upsetting, the diameter and height of the
sample were measured, as a result, a graph was plotted Y = Y(S) (Fig. 1).
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Fig. 1 — Dependence of the yield point on the relative density of the sleeve. The depend-
ence of the coefficient on the relative density is well expressed by the following experi-
mental relationship: z = 0.5S2

At the next stage of the study, powder bushings with an outer diameter Dy = 23 mm, an inner
diameter dy = 15 mm, and a height Hy, = 18 mm were used. The relative density of the samples was
Sp = 0.70. The sleeves were prepared by cutting in the meridian plane. A coordinate sect with cell sizes
was applied to the cut plane. 0.5-0.5 mm with a corundum needle on a UIM-21 instrumental micro-
scope.

Presentation of the main material. The deformation broach was carried out in a UME-10TM
machine at a speed Vo =5 mm/min. (interference i = (d — dg)/dy = 0.027). The taper angle of the man-
drel intake was a = 4 degrees, and the width of the calibrating clip was 1.5 mm. The broaching was
carried out until the sleeve grew (Fig. 2), then the deformation was stopped, the sleeves were removed
from the holder, and the coordinates of the deformed nodal points of the mesh were measured using a
UIM-21 microscope. Figure 2 shows the boundaries of deformation zones during a deforming broach
that changes its direction.

SO

Fig. 2 — Chipping deforming holes in the powder sleeve: 1 — mandrel; 2 — clip; 3 — sleeve;
ABC — plastic deformation zone
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Using the following ratio, we found the relative density
W
S=S5 —, 14
W (14)
where W, is the volume before the deformation of the annular element formed by the rotation of
the grid cell around the axis of the sleeve; W is the volume of the deformed annular element.
The rate of change of the location of the leaks in the direction is determined using the flow

function.

ldy S
VL AV L A (15)
rdz S rdr S
where r and z are coordinates of points, in them the velocities V, and V, are determined; S is the
relative density at this point; w= 1/27z, Q is the flow function, and Q = SyV, is the volume of the sub-

stance passing through the annular surface in unit time.
S, = n(rj —1,), where j is the ordinal number of the flow line determined by the coordinates of

the point; r,; is the distance before the flow line arrives from the bushing axis to the deformation cen-
ter; r, = d,/2 — inner radius of the undeformed part of the sleeve. Then the calculations were carried
out in the nodes of the computational grid with a step of 0.5 mm, superimposed on the figure of the
deformed coordinate grid. S and y were determined by line interpolation at the nodal points of the
regular grid. The found values of the relative densities S were used to find Y and .

The tensor components of the strain rates were determined by the following relation
_av, I\ v . dv, dv

K, , E =1, E =—t4—r, 16
d a T d g (10)

r z r

I.rzEr_Eo; I.ZZEZ_EO; |.0=E0_Eo’ (17)

E,

-1 i . )
here, E = g(Er + E_+ E,) isthe rate of volumetric deformation.

Then the components of the stress deviator were determined S;, S,, Sy. For axisymmetric defor-
mation, relation (13) takes the following form.

_ (4] lf i _ w Y f
@ H T T @ H
Y - Y .
0= @ _691 Ty = @ — s (18)
L+ ) H; 21+ p) H;
here
\/5 \/ - * \2 : ~ \2 2 3 2
= E -E)+(E, -E) +(E,-E) +=n°. 19
i 2(1+,U) ( r z) ( z 9) ( 0 r) 277rz ( )
Let us write down the relations
o,=S,+o0,;, o0,=S,+0,, 0,=S,+0,. (20)

To determine the average stresses oy in the deformation zone, we use the differential stability

equations
do dr O _0-‘9:0; dz—rz +E+T£:O; (21)
d r dd, T

r z r z
after substitution of relation (20), they obtain the following form
dﬂ+£+dﬁ+ﬁ:0; do, 85, dry 7o . (22)
d d, d, r d, d, d r
Accordingly, integrating Egs. (22) in the direction of the r and z axes and using the boundary con-
dition at point A to be the radial stress o; or equal to zero, we can find the average stresses oy, and then
using relations (20), we find the stresses o;, ;, oy. During deforming pulling, the stresses were calculat-
ed on a computer. When calculating random derivatives at the nodes of a regular grid, the finite differ-
ence method was used. Numerical integration was performed based on the Simpson formula [8, 9].
Figure 3 shows the diagrams of normal Q, and tangential 7, stresses along the r = constant con-
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tact line of the tangential contact surface. Normal stresses in the direction of the z axis grow rapidly
and get the highest values at the exit of the deformation zone. Shear stresses are also exposed to the
highest values at the exit of the deformation zone.

asl, sz,kqunf

N B O @

Fig. 3 — Diagrams of normal o and tangential 7, stresses tangent to the contact surface
along the r = const line

Due to the smallness of the angle a, these stresses at the first approximation can be considered
contact deformations. Consequently, there is no proportional relationship between the contact normal
and shear stresses. Therefore, when calculating the energy-power parameters of the process, it is nec-
essary to give an advantage to the law of friction not according to Coulomb, but according to Sieber.

The proposed method for determining stresses can be used for other stationary methods of pro-
cessing powder materials by pressure (rolling, extrusion, drawing, and others).

Conclusions

1. The model based on Beltram’s hypothesis on the use of the plastic state of a plastic porous
body was presented and a control that connects stresses and strain rates was derived.

2. The method was developed for determining stresses in stationary processes of pressure treat-
ment of powder materials, based on the use of a coordinate grid and the obtained equations of plastic
flow of a porous body to find the region of deformation rates. The method is applied to calculate
stresses during deforming broaching of holes in porous bushings obtained by cold pressing by inter-
mediate sintering from iron powder PZh2M3.
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