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Abstract. The results of development of a composite sorbent based on bentonite-like clay and synthetic 

hydroxyapatite and investigation of its properties are discussed. Morphological, structural characteristics and phase 

composition of the experimental sorbents are studied by X-ray diffraction analysis, scanning electron microscopy, and 

infrared spectroscopy. The composite sorbent has been found to have more sorption capacity toward Pb2+ ions (1250.3 

mg/g) as compared to the initial sorption active materials and conventional sorbents (activated carbon, bentonite, 

zeolites, etc.) as well as some composite sorbents based on hydroxyapatite. The developed composite sorbent provides 

100% purification of water from Pb2+ ions at their initial concentration in an aqueous solution equal to 200 mg/g and 

sorbate : sorbent mass relation equal to 1:10. 
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1 Introduction  

Waste water treatment has become a current problem all over the world since the latter half of the twentieth 

century. Some of the main pollutants of native water are heavy metal ions in waste waters from electroplating, mining 

plants, ironworks, non-ferrous smelters, machinery plants. Nowadays adsorption seems to be one of the most efficient 

techniques of fine purification of water (Charerntanyarak ,1999). The advantages of the sorption technique are the 

ability of fine purification of waste water from several pollutants and reactivation of waste adsorbents. 

Activated carbons, synthetic organic products, some waste products such as ash, slags, wood scrap, mineral 

materials such as zeolites, clays, gaize, as well as silica, aluminogels, metal hydroxides have been explored as sorbents. 

Today ion exchange is also widely used for water treatment and a wide variety of ion-exchange materials has been 

developed. The use of clay minerals of structural type 2:1 with changing basal spacing is known to be effective. 

Molecules of water and organic substances as well as positively or negatively charged ions can be included in the inter-
package cavities of the minerals. Ion exchange with the ions from the surroundings can take place in them. The clay 

minerals concerned can swell because of increase of space between basal layers where ions or molecules absorbed are 

located (Vezentsev et al. ,2008). 

Hydroxyapatite (HAP) Ca10(PO4)6(OH)2 has been known as the main inorganic constituent of bones and teeth 

of mammals and the component of phosphate mineral rocks (Gupta et al. ,2012). HAP can be used for the removal of 

toxic heavy metal ions, dyes, fluoride ions from aqueous solutions (Wang et al. ,2011). However, to separate suspended 

highly dispersed solid particles of HAP from the aqueous solutions after adsorption is quite difficult (Choi and Jeong 

,2008; Dong et al. ,2010). Positive results of the application of composite materials based on HAP for water purification 

are known (Dong et al. ,2010). For instance, the composite materials such as hydroxyapatite hydrogel – polyacrylamide 

(Hyun et al. ,2008), hydroxyapatite – polyurethane (Jang et al. ,2008), hydroxyapatite – chitozan (Hou et al. ,2012, 

Fiorino, Víctor Martin, and Amparo Holguín. 2018 ) and hydroxyapatite – magnetite (Dong et al. ,2010) were used to 
remove toxic metals and dyes from aqueous solutions.  

The development of composite sorbents based on bentonite-like clays combined with hydroxyapatite is of 

scientific interest. The aim of the work was the obtaining of the composite sorbents based on bentonite-like clays and 

hydroxyapatite prepared by the chemical precipitation and the investigation of sorption activity of the sorbents toward 

heavy metal ions as illustrated by Pb2+ as one of the most widespread pollutant.  

2.1. Materials and Methods. 
The following initial raw materials were used to prepare the composite sorbents: calcium hydroxide 

(analytical-reagent grade, GOST 9262-77), ortho-phosphoric acid (high grade, GOST 6552-80), and montmorillonite 

clay from Tam Bo deposite (province Lam Dong, Vietnam). The chemical composition of the clay was as follows 

(mass.%): SiO2
 (56.62), Al2O3  (20.90),  Fe2O3 (6.71), MgO (2.26), CaO (0.62), TiO2 (0.75), K2O (1.38), MnO (0.040), 

Na2O (0.067),  others (0.035),  mass loss ignition (10.58). The mineral composition was (mass.%) montmorillonite 

(47%), kaolinite (12%), illite (10%), dolomite (4%), quartz (21%), goethite (3%), chlorite (3%) (Vezentsev et al., 2015). 

2.2. Hydroxyapatite synthesis 

  Hydroxyapatite was synthesized using the modified procedure (Borisovich et al. 2008, Nirmala, J. 

2017)= ) according to the following equation  

10Ca(OH)2 + 6H3PO4 = Ca10(PO4)6(OH)2↓ + 18H2O.  

To prepare nanosized colloidal hydroxyapatite we used a saturated calcium hydroxide aqueous solution 

elutriated from precipitated portlandite-like aggregates of calcium hydroxide after 24h settling. The concentration of the 

saturated calcium hydroxide solution was 0.02 mol/L. 
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HAP was synthesized by adding a 10% (mass) solution of ortho-phosphoric acid to Ca(OH)2 solution with the 

rate 1.5–2.2 mL/min per liter of the saturated solution of calcium hydroxide. The reaction mixture was stirred for 20–30 

minutes with the stirring shaft HS 100D (1000 rpm) till the pH of the mixture achieved 10.5±0.5, then the mixture was 

allowed to settle for 24 hours. The product obtained was separated from the mother liquor by filtration, rinsed with 

distilled water and then dried in a baker at 105±50С  for 5h. The samples were powdered in a porcelain mortar. 

2.3. The preparation of the composite sorbent 

A 5 g sample of bentonite-like clay was added to a 5 L vessel containing 1880 mL of the saturated solution of 

Ca(OH)2. The suspension was stirred with the stirring shaft mentioned above for 2 h. The required volume of a 10% 

solution of ortho-phosphoric acid was added with the rate 1 mL/min at intensive stirring (1000 rpm) to provide the mole 
relation Са:Р equal to 1.67. Then the solution was stirred for 2 h. The pH10.5±0.5 was adjusted by adding a 2% 

ammonia solution. pH was measured with the pH meter Multitest IPL-101 (Russian Federation). The precipitate formed 

was allowed to settle for 24 h at room temperature and then separated, filtered, dried and powdered as described above. 

The particle size in the prepared composite sorbent was in the range 1– 10 μm.   

The chemical and phase composition as well as structural-morphological characteristics of the products 

obtained were determined at BelSU Common Use Centre for Diagnostics of Nanomaterials’ Structure and Properties. 

X-ray diffraction (XRD) patterns were recorded on a general purpose type diffractometer Rigaku Ultima IV (Japan) 

with D/teX Ultra detector. The electron-microscopic measurements were performed on a scanning electron/ion 

microscope Quanta 200 3D (USA) with an energy dispersive x-ray detector EDAX. IR-specters were made on a IR 

Fourier spectrometer IRPrestige-21 (Shimadzu). The measurement range was 4000-400 sm-1, the reference material was 

KBr. 
The sorption ability of bentonite-like clay, HAP and the composite sorbent bentonite–hydroxyapatite (CBH) 

was determined at static conditions using model solutions of lead (II) nitrate. Pb
2+

 concentrations in the solutions were 

measured using spectrophotometry on SPECORD 50 PLUS (Germany).  

The sorption capacity 𝑞𝑒 was calculated as 

𝑞𝑒 =
(𝐶0 − 𝐶𝑒)𝑉

𝑚
                                                                     (1)  

where 𝑞𝑒 (mg/g) is the sorption capacity at equilibrium, С0 and Ce are the initial and final concentrations of Pb2+ ions 

(mg/L), m is the mass of a sorbent (g), V is volume of a model solution Pb2+ (L). 

The maximal sorption capacity qm (mg/g), and the constant of the sorption equilibrium b (L/mg) were 

calculated according the linearized Langmuir isotherm  
𝐶𝑒

𝑞𝑒

=
1

𝑏𝑞𝑚

+  
𝐶𝑒

𝑞𝑚

                                                                 (2)  

. 

3.Results and Discussion 

3.1. Phase composition of the experimental sorbents 

Phase composition and purity of the products prepared were confirmed by XRD. X-ray powder diffraction 

patterns are shown in Fig. 1. 

Fig. 1 X-ray powder diffraction patterns of bentonite-like clay (1), HAP (2), CBH (3) 

 

The curve 1 demonstrates the presence of the some minerals, namely montmorillonite with the main reflection 

13.485, 4.499, 2.995, 2.129, 1.491 Å, kaolinite with 7.212, 4.499, 3.590, 1.423 Å, quartz 4.260, 3.348, 2.459, 1.189 Å. 
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The curve 2 obtained for the synthesized HAP is absolutely identical with that for typical hydroxyapatite (PDF card № 

01-074-3709), other phases are not detected.   

Peaks corresponding to X-rays reflection from families of Miller planes of the crystalline lattice with values of 

interplane distance of 3.446 (002), 2.789 (112), 2.634 (202), 2.260 (130), 1.944 (222), 1.807 (321) Å are observed on 

XRD pattern for the composite sorbent (curve 3). These reflections confirm the formation of the crystalline structure of 

HAP (Jie and Yubao 2004; Wang et al. 2011) in the composite sorbent as well.  

3.2.Morphological characteristics of the experimental sorbents 

Particle morphology of bentonite-like clay, HAP, and CBH is shown in Fig. 2. The particles of bentonite-like 

clay are detected either as aggregates with size in the range 5–10 μm or as separate, predominately platelike particles 
with size to  3 μm (Fig. 2.1). HAP is a white powder consisting of agglomerated particles from 1 to 10 μm (Fig. 2.2).  

Fig. 2.3 shows that the surface of bentonite-like clay particles (5–10 μm) is covered by the crystals of hydroxyapatite 

(1–5 μm).  

 

Fig. 2 SEM images of bentonite-like clay (1), HAP (2), CBH (3) 

 

3.3. The structural characteristics of the experimental sorbents 

 

IR spectra of the experimental sorbents are shown in Fig. 3. The curve 1 for bentonite-like clay from Tam Bo 
demonstrates specific bands in the range of stretching and deformation vibrations of structural groups for the main 

mineral montmorillonite. A sharp and intensive band with good resolution at 3619; 3697 and 913 cm-1 in the range of 

deformation stretch vibrations of the Х-ОН groups (where Х is Al, Si) is associated with octahedral cations (Zhirong et 

al. 2011). The peaks of maximal absorption at 3419 and 1643 cm-1 are attributed to the stretching and deformation 

vibrations of water molecules (Tarasevich and Ovcharenko 1975; Tyagi et al. 2006). Peaks in the range 1000–1100 cm-

1, namely the bands at 1032 cm-1 correspond to the stretching of bridging linkages Si–O–Si in the crystalline lattice. The 

bands at 462 и 693 cm-1 are assigned to the deformation vibration of the Si–O–Si angle (Zhirong et al. 2011).  

Fig. 3 IR-spectres of bentonite-like clay (1), HAP (2), CBH (3) 
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The typical of stoichiometric HAP bands can be seen on Fig. 3 (curve 2). They are the (OH)– band at 3570 cm–

1,  the bands of (PO)4
3- stretch vibrations at 1092 (a weak shoulder), 1033, and 963 cm-1, the bands of  (PO)4

3- 

deformation vibrations at 604, 566, and 470 cm–1. The bands that are characteristic for vibrations of (OH)– groups and 

carbonate groups  at 1420 и 875 cm–1 (Shahmohammadi et al. 2010; Thamaraiselvi et al. 2006) are also detected on the 

spectrum. These groups partially replace (PO)4
3– when been introduced into HAP structure during the synthesis due to 

absorption of  CO2 from air. However, the amounts of these impurities are negligible, so that carbonates cannot be 

revealed by X-ray diffraction. An effective surface of HAP nano-powder encourages sorption of a substantial amount of 

water. Stretching vibrations of absorbed water and crystallization water give rise to absorption in the range 3500–

2900cm–1, the band at 1671 cm–1 corresponds to deformation vibrations of H–O–H (Zakharov and Sentsov 2011). The 
bands that are specific to both of bentonite-like clay and stoichiometric HAP are present in the spectrum of the 

composite sorbent (curve 3).  

 

3.4. The investigation of the ability of the experimental sorbents to absorb Pb
2+

ions 

To determine the maximal sorption capacity of the developed sorbents the experiments were carried out at the 

following conditions: mass of a sorbent sample was 0.1±10-3g, the initial concentration of Pb2+ in model aqueous 

solutions varied from 40 mg/L to 2600 mg/L, temperature was  20 – 22°C, pH = 5 – 5.5, sorption time was up to 3 h.  

Kinetic curves of Pb2+ ions sorption by the experimental sorbents from model aqueous solutions are shown in 

Fig. 4.  The concentration of Pb2+ ions is lowered by a factor of 1.3 after 5 min of sorption by bentonite-like clay, and 

sorption equilibrium is virtually achieved in an hour at the final concentration 58.65 mg/L. The initial rate of Pb2+ 

sorption by HAP is higher than that by clay, the concentration of Pb2+ ions halves after 5 min, but sorption equilibrium 
is attained much slower.  Additional experiments have shown that the equilibrium state is achieved after 24 h and the 

equilibrium concentration is 11 mg/L. The highest rate of sorption is observed for the composite sorbent CBH which 

absorbs Pb2+ completely in one hour. 

 

Fig. 4 Kinetic curves of Pb2+ ions sorption from model aqueous solutions of the initial concentration 200mg/L: 

bentonite-like clay (1), HAP (2), CBH (3). 

 

Data on lead removal efficiency from model aqueous solutions are summarized in Table 1. They exhibit that 

water purification efficiency is 71.7 % after 3 hour exposure of bentonite-like clay and 90 % for hydroxyapatite whereas 

the composite sorbent demonstrates the maximal efficiency equal to 100 % at the same conditions.  

 

Table 1 The efficiency of lead ions removal from model aqueous solutions by the experimental sorbents 

Purification efficiency 

mass % 

Time, min 

5 1

0 

1

5 

3

0 

6

0 

1

20 

1

80 

Bentonite-like clay 2

5 

4

9.4 

5

7.5 

6

3.6 

7

0.7 

7

1.4 

7

1.7 
Hydroxyapatite (HAP) 5

0 

6

7 

7

1.5 

8

0 

8

5 

8

8 

9

0 
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Composite (CBH) 5

5 

9

0 

9

6.8 

9

9 

1

00 

1

00 

1

00 

 

All the sorption isotherms for the experimental sorbents shown in Fig. 5a resemble Langmuir adsorption 

isotherms. Experimental data taken as Ce/qe versus Ce fit straight lines with the correlation index more than 0.99 (Fig. 

5b). The maximal sorption capacities (qm) and the constants of sorption equilibrium (b) for the investigated samples 

calculated from these linearized isotherms are given in Table 2. The sorption capacity of the experimental sorbents 

toward Pb2+ ions increases in the same consequence like as the initial rate of sorption that is bentonite-like clay – HAP – 

CBH. 

 
 

Fig. 5 Sorption isotherms (a) and linearized sorption isotherms (b) of Pb2+ ions from aqueous solutions by 

bentonite-like clay (1), HAP (2), CBH (3). 

 

Table 2 The sorption characteristics of the experimental sorbents 

Sorbent qm 

(mg/g) 

b 

(L/mg) 

Bentonite-like clay 82.6 0.093 

Hydroxyapatite (HAP) 1005.1 0.385 

Composite (CBH) 1250.3 0.727 

 

Values of the maximal sorption capacity of some sorption active materials including some hydroxyapatite 

based composites are compared in Table 3.The maximal sorption capacity of our composite sorbent (CBH) is much 

more than those for conventional sorbents such as activated carbon (40.06 fold), kaolinite (68.5 fold), natural bentonite 

(65.14 fold), natural and synthetic zeolite (18.94 and 9.4 fold respectively). It is also higher than that for hydroxyapatite 

and Ca-deficient carbonated hydroxyapatite (1.25 and 2.96 fold respectively) as well as for hydroxyapatite– magnetite 

composite (2.1 fold), being approximately close to the maximal sorption capacity for chitozan/Fe-hydroxyapatite 

composite. 

 

Table 3 The comparison of the maximal sorption capacity toward Pb2+ ions 

№ Sorbent 
The maximal sorption 

capacity, mg/g 
Ref. 

1 Activated carbon 31.2 (Machida et al. 2005) 
2 Kaolinite 18.25 (Adebowale et al. 

2006) 

3 Natural bentonite 19.19 (Kul and Koyuncu 

2010) 

4 Natural zeolite  66 (Kragović et al. 2012) 

5 Modified zeolite 133 (Kragović et al. 2012) 

6 Hydroxyapatite 1000 (Mobasherpour et al. 

2012) 

7 Hydroxyapatite – magnetite 

composite 

598.8 
(Dong et al. 2010) 

8 Chitozan/Fe- hydroxyapatite 
composite 

1385 (Saber-Samandari et al. 
2014) 
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9 Ca-deficient carbonated 

hydroxyapatite  

(mole relation Са/(Р+С) – is 

1.67) 

422 (Dat et al. 2015) 

1

0 

Bentonite-like clay 82.6 The author’s data 

1

1 

Hydroxyapatite (HAP) 

1005.1 

The author’s data 

1
2 

Composite (CBH) 
1250.3 

The author’s data 

2 Conclusion 

The composite sorbent based on bentonite-like clay and synthetic hydroxyapatite has been developed. It is 

found by X-ray diffraction analysis, scanning electron microscopy, and infrared spectroscopy that hydroxyapatite 

prepared according the modified technique is of high purity. Hydroxyapatite crystals are found to be located on the 

surface of minerals composing bentonite-like clay in the developed composite sorbent. The investigated sorbents can be 

arranged in increasing order according to their sorption rate and efficiency as follows bentonite-like clay < 

hydroxyapatite<  composite sorbent. 

Pb2+ ions sorption from model aqueous solutions by the developed sorbents is found to be described by 

Langmuir sorption equation in the range of initial concentrations 40 – 2600 mg/L. The composite sorbent has the higher 

sorption capacity toward Pb2+ ions as compared to hydroxyapatite and bentonite-like clay from Lam Dong and provides 

the maximal purification efficiency (100%) at the initial concentration of Pb2+ equal to 200 mg/L and mass relation Pb2+ 
: sorbent equal to 1:10.  
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