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Abstract.This research solves the problem of studying quantum hashing cryptographic strength. The most 

important criteria, that should be taken into consideration during cryptographic strength studying, is quantum hashing 

strength against collisions, and irreversibility of quantum hash-functions. Strength against collisions for selected 

quantum hash-function depends on many numeric parameters, and it is necessary to find a corresponding optimization 

solution. It is necessary to conduct comparative analysis of known methods in this research to achieve the goal and offer 

new methods to deliver the result. In the course of research different algorithms were used and modified to ensure 

cryptographic strength of quantum hash-functions, and an algorithm on the basis of linear codes is developed to find a 

decision in case of high dimensionalities. 

Keywords: Quantum computing, quantum cryptography, quantum hashing. 

 

1.Introduction .Preserving information confidentiality is one of the most important current topics. Every day a 

large quantity of various information is transmitted through various communication channels. Various encryption 
algorithms are used to protect information. Classical cryptography is based on one-way functions, such as the prime 

factorization task. Note that this task for a quantum computer is effectively solvable. 

Quantum cryptography offers its own approaches to ensure information confidentiality. A particularly 

important approach is reflected in the quantum information theory, which proposes the technique of quantum hashing. 

The approach aims to ensure the cryptographic stability of protocols based on the laws of quantum mechanics. It offers 

various quantum hash functions, and analyzes properties the functions should have. To use cryptographic algorithms, it 

is necessary to convert the input information with the help of hash functions that map an input array of random length to 

an output bit string of a certain length. In the quantum case, these functions must have at least two important properties: 

one-wayness and strength against quantum collisions. 

This paper solves the problem of researching into perfect cryptography of quantum hashing. The most 

important criteria that should be considered in the study of cryptographic stability are the strength of quantum hashing 
against collisions, and one-wayness of quantum hash functions. The collision resistance for the selected quantum hash 

function depends on the set of numeric parameters, to find which, it is necessary to solve the corresponding 

optimization problem. 

2.Methods. Let us consider the basic concepts and terminology used in the article to determine the methods 

represented: 

Qubit — a unit of information in quantum computation. In contrast to the classical bit, which at any time can 

be in one of two states - in the state 0 or 1 (or | 0> and |1> for the qubit), the qubit can be simultaneously in a 

superposition of these states. 

 

We will introduce the main properties of cryptographic functions according to the book [1] :  

 

 1) Irreversibility For a given value of v of the hash function, it must be “computationally infeasible” to find 
some message w, for which v = hash(w)  

2) Effective computability For a given value of w, it is easy to calculate  v=hash(w)) 

These two properties together give the property of irreversibility 

3) Collision resistance For a given value of w, it must be “Computationally difficult” to find another value w ≠ 

w’, for which hash(w) = hash(w’).  

The following algorithms have been singled out for the research in this paper: 

1) Random search 

2) Genetic algorithm 

3) Algorithm of simulated annealing 

4) Constructive algorithm based on linear codes 
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In those cases when we cannot be sure of the accuracy of the solution obtained or in the absence of a general 

solution, we turn to heuristic algorithms. They also cannot guarantee an exact solution, but they allow finding the best-

enough solution in most variants.  
We carried out an analysis of the object domain and derived the following function. Let’s consider it: 

 

Here B is the set of binary sets  

Let us write down: 

 
The problem consists in finding the set of binary sets B for which the function (2) comes up to a minimum.  

The most appropriate solution is achieved when  , whence it follows that  

But with this approach, we will not be satisfied with the size of hash, since there will be no preimage resistance.  
In this regard, it is required to carry out a comparative analysis of various algorithms to find the answer to the 

problem, as well as to develop new approaches to its solution. 

3.Results.We will become familiar with the above algorithms in the research context in this work: Random 

search  

In application to our problem, unlike a full enumeration, the search consists in generating a random set of 

parameters, that is determined depending on the input data. The algorithm generates a random set at each iteration, 

checks the fulfillment of condition , and if the condition is met, we get the sought set B.  

It is worth noting that the time span when using this algorithm is reduced at times. 

Here we can already work with different sizes of sets and even with different sizes of input messages in each set. 

1) Genetic algorithm  

Heuristic algorithm, aimed at more effective search for solutions to ensure cryptographic strength and collision 

information to a minimum. 

For more on the algorithm: 

In our case, the genotype will be a randomly defined set. This is the set of the initial population. 

 The fitness function   
 
is given,  mutation is the changing  the random bit in each set, crossing is the 

splitting the sets of parents into 2 parts and exchanging these parts. 

At the start of the algorithm, the parameters of dimension n, d are also defined, after which a random set with such 

parameters is generated. After this, the mutation of one of the set elements is performed on the set. Next, the fitness 

function on the set is tested. 

At the next stage, using the fitness function, the optimus half is determined. This half crosses with each other 

and “off-spring” is formed - new sets are determined from each pair of sets in this half (0-1, 2-3, etc.). There will be half 

of one and half of the other set. Then this “off-spring” is added to the original set, sorting according to the fitness 

function is performed and the worst sets are removed. As a result, the size of the set is sorted to its original size. We 

obtain the sought set. At the next stage, the algorithm starts with the new data. 

2) Stipulated annealing algorithm   

A stochastic heuristic algorithm, or an algorithm that can find by chance. 
The physical process of crystallization гsed in metallurgy is under consideration. The metal has a certain 

crystal lattice in which the atoms are located. At the same time, it has energy, and the lower it is, the better the crystal 

lattice is. Atoms are aimed to go into the state with less energy. The metal is first heated, then gradually cooled.  

In our problem, the energy is the maximum value of δ, which we fix as one of the parameters, neighboring sets 

are the sets that differ in value of one element. When atoms are in the crystal lattice, they can still move from one cell to 

another, if the energy decreases. 

First, a random set is generated. This set is a crystal lattice. 

At the next step, a transition to an adjacent variant of lattice takes place, with a certain probability (using the 

Gibbs distribution), which depends on the temperature (which in turn depends on the maximum δ on the set). 
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These iterations are repeated, and the temperature gradually decreases. The work of the algorithm is completed 

when the desired value of δ, specified as a parameter, is obtained. 

The result - we get the desired set of parameters B at the output. 
An example how the algorithm works: 

annealing d = 8, n = 8 

([74, 11, 67, 45, 151, 70, 183, 126], 0.75, 30.01941783550427) 

annealing d = 16, n = 8 

([130, 2, 49, 247, 204, 253, 119, 123, 20, 141, 91, 176, 9, 39, 152, 135], 0.5, 30.09218839747274) 

3) Constructive algorithm based on linear codes  

In this paper we will give consideration to the representation of classical information in the form of a quantum 

superposition of the following form: 

 

where the set  will be called a set with small deviation if for random set 

it is fulfilled: 

 

where scalar product -  the parameter that enables 

the probability of the appearance of quantum collisions. 

Consider a finite Galois Fq field of the order q, in which q is the number of elements of the field. The finite 

field is defined by the order q = p2, p = 2l, where p is a prime number, l is any integer. 
An important component in this paper is the following property: 

Suppose prime polynomial of power 2l, then the F2
2l field will 

contain any root of an irreducible polynomial. That is, F2
2l is the splitting field of the polynomial over the F2 field. 

In the Fq field, we are interested in the operations of addition, multiplication, and the exponential operation to 

solve an equation, which we will consider below. For this we need the Boolean function XOR: 
0 xor 0 = 1 xor 1= 0 

0 xor 1 = 1 xor 0 =1 

In this case, the linear code C acts from the finite Fq field (since we have operations in this field) to the set B, 

where d is the size of the set. 

Present the following algorithm:  

1. Input data:  

2. Choose   – power of two so, that  

3. Let  

4. Solve the equation . Let — the set of all pairs of roots of 

the equation. 

To realize it, we assume that p ≤ 26 = 64 (otherwise we do not have enough memory for the set D of size p5), so 

q = p2 ≤ 212 = 4096 

Since we have x, y – the roots of the equation, which can take q of different values, then we need to search q2 

of the pairs, which is not more than 224 = 16777216 

Therefore, a complete search can be considered acceptable in this solution. 
5. Put down the set  

, 

where bin — the binary representation of the field element, the angle brackets — the scalar product modulo 2.  

4.Discussion. 
4.1.  Methods of comparing algorithms .Each of the above algorithms has the same parameters to obtain the 

results, the following criteria were selected for comparing the algorithms: 
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n – the size of input message; 

d – the size of the set; 

δ – the parameter which the probability of collisions depends on; 
t – the time of algorithm working. 

maximum of search  

Let’s give a graphic interpretation to our algorithms. For illustrative comparison, we will consider several 

algorithms that can cope with different sizes of input data. Depending on the input parameters, the results may vary. 

4.2. Approximation .Let us try to take a large dimension n for the linear algorithm n >> 8. Let us try to 

approximate the construction for large sizes n. We assume that log (D) increases in proportion to n. 

 
                            Polynominal growth of the size of set 

It is worth noting that for large dimensions n the objective function  is calculated exponentially long. 

With n=21, the calculation will be 32 times longer. Therefore, we will take the sets  to construct a set of parameters.  

Next, we will use the randsearch, genetic, anneling algorithms of exponential complexity considered earlier.  

Recall that: 

1) Random search (randsearch) is the search that consists in generating a random set of parameters, 

determined depending on the input data. The algorithm generates a random set at each iteration, checks the conditions 

, and when the condition is reached, we get the desired set. 

2) The genetic algorithm (genetic) is a heuristic algorithm, a key idea: a mutation in the set of the initial 

population, the crossing and breeding of a new offspring that satisfies the fitness functions. The aim of the algorithm is 
in more effective search for a solution to ensure cryptographic strength and collision reduction to a minimum. 

3) Simulated annealing algorithm (annealing) is a stochastic heuristic algorithm that considers the physical 

process of annealing metals. To obtain a set of parameters, the Gibbs distribution is used. 

We will calculate the objective function to n = 16 for all algorithms, then for linear algorithm we start the 

approximation for the sizes n >> 16. Fix   and show the size of the sets d related to the size of the input message n: 
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The size of sets d related to the size of the input n, for n = 4, ..., 120 in the algorithms of random search 

(randsearch), genetic algorithm, simulated annealing algorithm, linear algorithm in finite fields (linear) at   0.5 

We restricted the computation of the randsearch, genetic, annealing algorithms for n = 4,8,16, since 

calculations for larger sizes of n require a very long elapsed time. 

linear algorithm is able to work on large dimensions n, but with small sizes n = 4,8 heuristic approaches and 

random search still justify themselves more. It is more efficient to use them for these dimensions. 

In terms of speed, the linear algorithm works much faster even on large sizes n compared to the studied heuristic 

algorithms. It found a solution within a given interval  by searching n = 120 d = 32768 in just 10 minutes, when the 

other algorithms considered would require polynomial time for this solution. 

Let’s give an assessment from above to the linear algorithm to the threshold   

 
The size of the sets d related to the size of the input, for n = 4, ..., 1128 

in a constructive algorithm in finite fields (linear) with  0.3 

Thanks to the upper assessment, the algorithm is able to find a solution even on such large dimensions d, n. 

The time for each iteration does not exceed 5 seconds. Here, we refer to the rationale (4), thanks to which it 
was possible to obtain such results. 

Thus, the constructive algorithm is capable of working at large values of n, and the work of the algorithm ends 

in an excellent time. 

5. Conclusions. As a result of this work, the methods for ensuring the strength of a binary quantum hash 

function against collisions have been developed and analyzed. Using the proposed algorithms, it is possible to obtain 

quantum hashing parameters that provide a given level of collision resistance. 

An experimental analysis of the operation of various algorithms has been carried out. Based on the results of 

experiments in most cases, the genetic algorithm and random search obtain a better solution, while the genetic algorithm 

based on deducing the “new generation” exceeds random search on the average. The simulated annealing algorithm is 

inferior to randsearch. It is also necessary to take into account the time spent searching for solutions for large sizes of 

input messages n: the larger the size of the input is, the more sets will need to be sorted out to find the desired solution. 

It has been experimentally established, in which cases it makes sense to apply heuristic algorithms, and in 
which a constructive algorithm which is capable of working with large dimensions n in an acceptable time 
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