
Herald NAMSCA  3, 2018                                                                              Martyshkin A.I. , Yasarevskaya O.N. 

  

790 

 

QUERIES SERVICE TIME RESEARCH AND ESTIMATION DURING INFORMATION EXCHANGE IN 

MULTIPROCESSOR SYSTEMS WITH “UNI BUS” INTERFACE AND SHARED MEMORY 

 

Martyshkin A.I.
 

associate professor of the “Computing Machines and Systems” Chair of Penza State Technological University, PhD 

(Engineering Sciences), associate professor;
 

E-Mail: alexey314@yandex.ru 

Yasarevskaya O.N.
 

associate professor of the “Foreign Languages” Chair of Penza State Technological University, PhD (Pedagogy), 

associate professor; 

E-Mail: olga-appointment@yandex.ru 

 

Abstract. The issues connected with estimating service time of queries (transactions) during the information 

exchange in multiprocessor systems with a unibus interface and shared memory are analyzed and studied in the article. 

The article  aims at developing and making research of models based on systems and queueing networks, the "proces-

sor-memory" subsystem, as well as estimating the queries service time during the information exchange in multiproces-

sor systems with shared memory. The subject matter of the study is the analysis of time delays associated with conflict 

situations occured during the realization of interprocessor exchange when many processors turn to the  exchange unibus 

and memory. The object of the article research is the "processor-memory" subsystem of existing multiprocessor systems 

and well-known versions of the architecture of this subsystem . The main task defined by the authors of the scientific 

article is to develop and make research of mathematical models of the "processor-memory" subsystem of the mentioned 

systems and to estimate the processing time of inputting queries during the information exchange in systems with 

shared memory. Mathematical models for carrying out queries service time research have been proposed. Equations for 

determining the main probabilistic-temporal characteristics of the "processor-memory" subsystem have been presented. 

The mentioned probabilistic-temporal models have been developed using the theory of queueing networks and probabil-

ity theory. In conclusion the authors make the main judgements about the work done. The mathematical models studied 

in the article make it possible to estimate the main probabilistic-temporal characteristics of multiprocessor systems 

without developing real models or prototypes. As a result some effect is achieved, because it is possible to estimate the 

characteristics of new multiprocessor computer systems and choose the most optimal ones without creating a real ex-

pensive system 

Keywords: simulation, analytical model, imitation model, queueing network system, transaction, read-

operation, record-operation, multiprocessor system, “processor-memory” subsystem, memory architecture, memory 

bandwidth, memory controller, memory latency, buffer element. 

 

1 Introduction 
The improvement of high-performance computing systems capacities (СSs) is directly connected with the 

increase of the speed and capacity of the memory being part of the system. Despite the rapid increase of the RAM 

bandwidth the indexes gap existing now in the "processor-memory" subsystem is not decreasing, but is increasing 

enormously. 

To obtain the necessary characteristics at the system design stage one should carry out an analysis of various 

variants of the structural organization. There are two main stages of the analysis: macroanalysis and microanalysis [1] 

which allow us to obtain quantitative and qualitative indexes of CSs. 

The usage of CSs analytical modeling methods for these purposes can be explained by the existence of delays of the 

computing process due to limited system resources. Multiprocessor systems (MPSs) are affected by this phenomenon most of all, 

where resources are shared not only between devices, as in the case of uni-processor CSs, but also between several central 

processors (CPUs) claiming an access to them. 

There are many sources of delays in any CS: CPU, RAM, external storage devices, I / O channels, exchange 

pathways, etc. The research subject of this article is to analyze the delays associated with conflicts arising during the 

interprocessor exchange when a set of CPUs have an access to the unibus (UB) and  memory. 

The main goal of the article is to develop mathematical models of the "processor-memory" subsystem  of 

MPSs and, in addition, to estimate the processing time of inputting transactions while exchanging data in systems with 

shared memory. This issue is relevant because of the CSs developers’ constant desire to deminish the problem of, the 

so-called,  “bottlenecks”, such as communication devices (an obviuos example is UB). 

The paper deals with the analytical modeling of MPSs with the bus architecture and uni-(shared) memory. 

There are two types of such a memory actively used in modern MPSs: lumped and distributed [3]. The lumped memory 

provides the same access time for all the CPUs, so the MPSs with this memory organization is called symmetric (SMP) 

or UMA systems [1]. Such a mathematical model [2] has some variants of the organization. The real memory modules 

bandwidth and, as a consequence, the performance of the whole MPS depend on the realization of these variants. In 

cases where the UB is used as an interaction medium [3], the capacity of the MPS is also greatly influenced by its 
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bandwidth. MPSs, in which memory with a unified address space is distributed over processor modules, is called DSM 

or NUMA-systems [1]. 

Memory rivalry shared by several devices including CPUs, direct memory access channels, etc., is the most 

common reason of a slowdown. Even the organization of memory in the form of several independent blocks does not 

exclude conflicts because of the random nature of blocks queries. 

UB sharing between CSs devices also leads to a slowdown. It is so because if the bus is loaded, for example, if 

you try to hold it with several CPUs simultaneously, after detection and conflict resolution, only one device will 

continue working, while others will stop working. Thus, rivalry for UB requires a detailed analysis, since the conflicts 

arising influence both its bandwidth and the overall performance of MPSs. 

To carry out a CSs research and analysis one should use as a rule techniques of probability theory and 

queueing theory, namely, systems (QSs) and queueing networks (QNs). Any part of a CS can be represented in the form 

of QS, and a set of all CS devices is represented by QN.  It is rather easy to make a research with minimal financial 

costs.  It is not necessary to build a real system. A mathematical model is quite enough [4]. 

2 Theoretical Analysis 

This article is of a research nature. To solve the problem a number of literature sources have been analyzed [5, 

6, 7] describing researches in the field under study searching for unimpaired and open issues. A number of issues 

related to the research of the "processor-memory" subsystem were not covered  in scientific publications. Partially some 

problematic issues were considered in [8, 9]. 

MPSs parallel memory can be realized by two ways: 1) by layered blocks using address striping  and unified 

addressing and data buffering (Figure 1a); 2) by independent blocks having their own addressing and data buffering 

(Figure 1b) [1]. 

 

 
Figure 1 – MPS units with shared memory: а – address striping memory;  

b – independent blocks memory 
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As you can see from Figure 1, several CPUs use one and the same bus to access memory and interact with each 

other simultaneously. The main functions of the bus interface are as follows: 

  - UB holding / disposal handling; 

- transmission of addresses, data and control signals into and out of the memory; 

- recognition of its own address  set on UB devices of the system; 

- external interrupts providing; 

- transmitting data buffering. 

Each CPU is assigned a unique number, which is called its own address. The exchange protocol provides the 

recognition of its own address, when the message is transmitted externally to this CPU module. The bus interface 

constantly keeps track the identifier of the address assigned. Once it detects its own address the CPU module is 

switched to the UB and data from the bus is received. 

In this paper [10] principles and algorithms of similar systems functioning are discussed. While working there can 

arise conflicts reducing CPU performance, as the execution time of a command increases during a memory query. The more 

CPUs are included in an MPS, the higher the memory  queries number is and, consequently, the higher the performance losses 

of an individual CPU are due to conflicts in accessing UB and memory. In this article, we will examine in more detail 

probabilistic and time-dependent characteristics of a MPS with shared memory. 

Assume that the "processor-memory" exchange is made word by word or by groups of words. If you use 

exchange without transactions splitting, a simple bus cycle is necessary to perform a write/read transaction. Then it is 

disposed and can be used for processing another transaction [11]. 

Time required for a trasaction execution is 

T W B    ,     (1) 

where 
W  – time spent by the CPU for UB holding; B  – bus cycle. Time holding  

W  depends on the way 

of UB handling, and the minimal value of a bus cycle is  

B A M    ,     (2) 

where 
B  – time spent for an address being trasmitted from the CPU into memory; 

M  – memory cycle. Taking into 

accout that the second summand is more than the first one it is evident that the bus cycle time depends greatly on the memory 

cycle time. 

Memory cycle declination is achieved via the parallel operation of its modules. To provide a sufficiently high 

memory speed one should improve the bandwidth of the UB. This can be achieved by applying the method of 

transactions splitting [2, 11] when transferring data between the CPU and the shared memory. It results in bus cycle 

declination due to the usage of high-speed buffer memory in the circuits of CPU interaction via the UB and in memory 

controllers (often specialized [11]). In this case, it is possible to transfer several transactions via the UB during the 

memory cycle, and as a result, a number of independent memory modules can operate in multiple. 

The transactions splitting mode has its own peculiarities. They are as follows: only one transaction is created in 

the memory during recording; and there are two transactions during reading. The first is directly connected with the 

address inputting into memory that is stored in the buffer of the memory controller, after that the UB is disposed for 

other interactions. The second transaction is directly connected with the data recovery from the memory to the CPU. 

The memory buffer device (controller) [12] in this case is a more intelligent device than a similar controller 

used in the transactions non-splitting mode. The functions of the controller are as follows: the data posting to the 

specified CPU module of the shared memory, and after having been read, it is to hold the UB and transmit data to the 

destination point. In other words, the memory controller device should possess a high-speed memory for storing 

transactions, and moreover, it is necessary to have a control circuit providing an access to the UB. This method is called 

the exchange of transmitting data with buffering or packet switching [2]. 

Recording execution time is  

 
T W A BUF      ,    (3) 

Reading execution time is  

                   2T W A BUF       ,    (4) 

where BUF  –buffer memory addressing time, and bus cycle is  

B A BUF    .     (5) 

If packet exchange is used for the exchange between the CPU and memory, the transaction execution time in 

the transactions non-splitting mode is equal to 

W A
T Mk k

 
    ,    (6) 

where k – the number of words in one packet. 
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The bus cycle is reduced in this case and is  

A
B Mk


   .     (7) 

Correspondently in exchange execution with transactions splitting it is equal to 

                  W A
T BUFk k

 
    ,    (8) 

bus cycle is 

A
B BUFk


   .     (9) 

In real systems using a synchronous bus [13, 14] CPU one clock cycle (t) is allocated to access the UB, address 

outputting, and to the buffer memory, and m cycles are allocated to access the memory. Then with word-by-word 

exchange in the transactions non-splitting mode 2T t m    , where m can take values from 10 to 60 clock cycles 

of the CPU for the cached memory. In the transactions splitting  exchange mode 3T t   .When we use the 

exchange transactions non-splitting packet mode  then 2
T

t m
k

   . If we use transactions splitting then 

2
T

t t
k

   . 

Since a MPS consists  of a number of CPUs, it is obvious that there will be conflicts between them for accessing the 

UB and the shared memory. This, of course, leads to an increase of the transactions execution time due to idle states queueing 

for their servicing. Let's consider a technique according to which it is possible to determine the influence of conflict situations 

on the transaction execution time.  

Models for delays studying are presented as open two-phase network models (Figure 2), where the source of 

queries is CPUs providing task flows (transactions).  Servicing devices are the UB and shared memory. In the models 

transaction flows are represented as task flows for servicing i,  / ,i i iN T   where Ni is an average number of 

transactions of the i-th CPU to the memory during the Ti problem solution time. Queries servicing from the flow i  

passes through two phases: the first one simulates delays, which are directly connected with the transactions processing 

of the UB, at the second – with the shared memory. In order to simplify and estimate the results obtained "from above", 

we assume that all flows are the simplest ones, and the service time is either constant or exponential. 

Figure 2 schematically shows the mathematical models of the systems represented in Figure 1: the system 

shown in Figure 1a corresponds to the model shown in Figure 2a, and the model shown in Figure 1b corresponds to the 

model shown in Figure 2b. 

 
Figure 2 – MPS models circuits: a) address striping memory;  

b) independent blocks memory 



Herald NAMSCA  3, 2018                                                                              Martyshkin A.I. , Yasarevskaya O.N. 

  

794 

 

Delays estimation in systems using non-splitting transactions exchange is done according to the following 

procedure. Since the UB service model is represented by a single-channel QS, the service time at the first phase is 
T . 

The service model in the memory can be represented by either a multi-channel QS, or by a set of single-channel QSs 

[15]. The service time at the second phase is B  . 

The input task flow rate of the two-phase model is   

1

n

i

i

 


 , where i – transactions flow rate generated 

by  i-th CPU.  

The service latency period in queues at the first phase is [16].  

2

1
2(1 )

UB

UB

w






,     (10)   

where 
UB – UB service time determined by equations (1, 3, 4, 6, 8).  

At the second phase it is done correspodently 
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, (11) 

where 
Module  – service time by shared memory modules detrmined by equations (2, 5, 7, 9).     

The service process of inputing tasks into the model shown in Figure 2, b, is as follows. The task from the input flow 

with the rate 0 servived in QS S1, with the probability p1j, is inputted in one of QSs Sj (j = 2, ..., m + 1). It is accepted in the 

article that the service in QS Sj is carried out in accordance with the FIFO discipline.  

The input flow rate of a two-phase QS is 
1 ,j jP   where tasks query probability in a QS Sj 

(j=2,…,m+1) can be deterrmined as 
1 1 / ,j jp N N where N1j is an average number of transactions being served by 

the j-th memory module during the tasks solution time; N is a total number of transactions inputted into the memory for 

servicing, i.e. 

1

2

m

j

j

N N




 .  

The task latency period at the first service phase is determined by the equation (6). The task latency period at 

the second service phase is :  
2

1

2
2(1 )

j Module

Module

p
w







.     (12) 

The total service latency time in queues is 
1 2w w w  , the exchange operations execution time between 

the CPU and shared memory (latency) is 

  
*

T T w   .      (13) 

In practical analysis the Netburst CPU of Pentium architecture with the clock speed of 2000 GHz, DDR PC-

3200 memory and QDR bus were used. 

The memory access time was calculated on the basis of corresponding timings and statistical data. The time 

obtained is 37.5 ns. The analysis of the influence of queries frequency to the shared memory on the actual memory 

bandwidth was carried out taking into account that some of the queries will be satisfied in the cache of the CPU. It is 

obvious the queries frequency to shared memory modules will directly depend on the architecture of the CPU, its speed, 

as well as the number of CPUs in the system, the amount cache memory capacity, and the efficiency of the algorithm 

for cache coherency maintaining. 

Four-CPUs system was adopted for the analysis where all levels contain 512 KB of cache. In accordance with 

the statistical data [3] about 99% of the queries get in the cache with such a capacity. The data flow from the 2 GHz 

CPU to the shared memory is assumed to be 0.02 queries / ns. It is assumed that the memory query happens to be  in 

each processor clock cycle. 

Two variants of MPS functioning with NUMA-architecture were analyzed during the process of simulation: 1) 

each CPU executes its own part of the program, mainly located in the local memory; here, the probability of accessing 

remote memory (the structure of inputting MISD task) is quite low; 2) all the CPUs execute the parts of the program, 
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the data for which is distributed equally throughout the whole memory; the probability of the access to memory 

modules is high [the structure of inputtingg MIMD task]. 

Both variants discussed for MPSs with UMA-architecture will be equivalent since there is no concept of local 

and remote memory in such MPSs. 

For the architecture estimation the latency of the memory subsystem, measured in nanoseconds, was used. It 

should be noted immediately that the latency values can not be considered to be accurate when working with an open-

type QNs. The result is not the exact amount of the CPU latency time of the data from the memory, but the 

compatibility ratio for the CPU speed and the memory subsystem. The higher the ratio, the greater the difference in 

performance in favor of the CPU and the more tangible delays in real CSs associated with obtaining data from the 

memory are. To visualize the value of such ratios in the program [17,18,19] a series of calculations was done with a 

different input flow of queries (with different CPU clock speeds). 

The diagrams (Figure 3 and Figure 4) show us the results obtained in the process of simulating.  

 
Figure 3 – Memory subsystems latency dependence on the queries flow frequency using address  striping 

memory 

 

The graph (Figure 3) shows the memory subsystem latency dependence on the queries flow frequency to the 

memory from 4 CPUs using address striping memory. We can see the power balance among the architectures of the 

memory subsystem. It is clerly seen that the best characteristics are demonstrated by the MPS with the NUMA memory 

architecture (with the structure of the inputting MIMD task) in comparison with the  rest two functions options 

considered above. With a total flow of 0.08 queries / ns from 4 CPUs, the latency of the memory subsystem is 150 ns, 

while the MPS with the NUMA memory architecture (with the structure of the inputting MISD task) (with a flow of 

0.05 queries / ns, the latency is 191 ns) and MPS with the memory architecture UMA (with a flow of 0.03 queries / ns 

latency is 327 ns) with such a stream of tasks can not manage. 

Analyzing the load factors of individual QSs, it is possible to determine the "bottlenecks" of the presented 

architectures. By changing the processing time in a QS or the number of channels, it is possible to determine the 

maximum parameters of the nodes taking the CS from bottlenecks off. In all three variants the "bottleneck" was the UB. 
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Figure 4 – Memory subsystems latency dependence on the queries flow frequency to the memory using the 

memory of an independent blocks set  

 

Figure 4 shows the memory subsystem latency dependence on the queries flow frequency to the memory from 4 

CPUs using the memory of an independent blocks set. You can see that the latency has decreased greatly (especially for 

MPS with UMA memory architecture). With a total flow of 0.08 queries / ns from 4 CPUs, the latency of the memory 

subsystem is 108 ns [in the MPS with the NUMA memory architecture (with the inputting MISD task structure), with a 

similar MPS flow with the NUMA memory architecture (with the inputting MIMD task structure) the latency of the 

memory subsystem is 150 ns, while in the MPS with the memory architecture UMA with the flow of 0.06 queries / ns the 

latency is 192 ns]. 

The results of the analytical modeling were tested on imitation models built using the program [18] and differ by 

no more than 15%. It is quite acceptable at the stage of the preliminary design of a MPS. Based on these results a number 

of conclusions can be made and specific solutions can be proposed allowing to increase the speed and performance of the 

memory subsystem, as well as the whole MPS. 

3 Conclusions 

In this paper, the time for transactions servicing during the data exchange in multiprocessor systems on the 

basis of the UB with the shared memory has been estimated. Analytical models based on open queueing networks have 

been developed. Equations for calculating the transactions execution time during the exchange of the "processor-

memory" subsystem have been proposed. A general analysis of MPSs performance has been carried out. It should be 

noted if there are overflowing flows at the input of the network model or there is a dependence of the generation of new 

queries on the condition of existing queries execution, then closed models should be used for the analysis. 

If the queries flows at the network input and the service time of individual devices do not possess the 

exponential law, there are overflowing flows in the simulating system, and the formation of a new query depends on the 

service conditions of the previously generated query, then simulations should be used to calculate models. 

Later in the models it is supposed to take into account the traffic appearing in the switching environment, as a 

result of providing cache coherency and memory interaction with external storage devices. 

The mathematical models discussed in the article make it possible to estimate the characteristics of 

multiprocessor systems without developing real models of such high tech and resource-intensive systems. Due to this, 

actually, the economic effect is achieved, since it is possible to estimate the characteristics of the systems being 

developed and choose the most optimal options without developing a real system. 
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