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Introduction 

Vitamin D3 (cholecalciferol), the natural form 

of vitamin D, is produced in the skin from 7-

dehydrocholesterol. Upon irradiation, 7-

dehydrocholesterol produces pre-vitamin D3 which 

undergoes a temperature-sensitive rearrangement of 

three double bonds to form vitamin D3. The synthesis of 

vitamin D in the skin is the most important source of 

vitamin D. Vitamin D can also be taken through nutrition, 

in the diet, but it is present in only a few food sources, 

such as little number of fish species, containing relevant 

levels of vitamin D. Vegetarian diet is limited to the plant 

vitamin D2 that is only present in some mushrooms. 

Commercially dark cultivated white button mushrooms 

contain low amounts of vitamin D2, only wild 

mushrooms or sun-dried mushrooms contain elevated 

amounts of ergocalciferol [1].  

Vitamin D3 assumes its biological activity by 

binding with DBP (Vitamin D binding protein), which 

transports vitamin D and its metabolites from blood 

serum to the liver. Where vitamin D is hydroxylated at 

C-25 to produce its major circulating form – 25-

hydroxyvitamin [2].  The 25-hydroxyvitamin D3 needs to 

be further hydroxylated to form 1,25-dihydroxyvitamin 

D3. Major sites for conversion of 25(OH)D3 to 

1,25(OH)2D3 are kidney and placenta [3]. 

1,25-dihydroxyvitamin D3 [1,25(OH)2D3] is the 

hormonally active form of vitamin D. Novel researches 

show it generates a number of extraskeletal biological 

responses including inhibition of variety types cancer 

progression, effects on cardiovascular disorders and 

mediates a protection against a number of inflammatory, 

autoimmune and infection diseases [4]. 

The biological actions of 1,25(OH)2D3 are 

mediated by the VDR. VDR is a polymorphic nuclear 

receptor and belongs to the steroid receptor family which 

includes receptors for retinoic acid, thyroid hormone, sex 

hormones, and adrenal steroids [5]. The heterogeneous 

loss of function mutations in the VDR caused the 

1,25(OH)2D3 organ resistance and leads to Hereditary 

vitamin D-resistant rickets [6]. The genomic mechanism 

of 1,25(OH)2D3 action involves the direct binding of 

1,25(OH)2D3 activated VDR/RXR to specific DNA 

sequences [vitamin D response elements (VDREs)] in 

and around target genes resulting in either activation or 

repression of transcription [7]. In this way more than 

1000 genes are regulated by Vitamin D through the 

VDR [8]. VDR modulates the expression of genes 

involved in immune function and cytokine production. 

The VDR and CYP27B1, the enzyme located in kidneys 

and target organs, are present in immune competent cells, 

bronchial and pulmonary epithelial cells, among others, 

and is up-regulated following the ligation of specific toll-

like receptors by extracellular pathogens, implicating 

vitamin D in innate immunity [9-14]. 

By binding the VDR, calcitriol induces several 

endogenous antimicrobial peptides (AMP) in monocytes, 

neutrophils and epithelial cells including cathelicidin LL-

37, α-defensin, β defensing and neutrophil gelatinase-

associated lipocalin and up-regulates nitric oxide (NO) 

synthase [15-18]. AMPs inhibit infection caused by 

bacteria, viruses and fungi, while NO synthase augments 

bacterial killing by up-regulating the oxidative burst in 

activated macrophages [19-22]. Vitamin D may also 

induce a Th2-based response, characterized by high 

Immunoglobulin IgE and eosinophilia, to combat 

extracellular infections caused by parasites, protozoa and 

fungi. In addition to its role in innate immunity, calcitriol 

suppresses pro-inflammatory cytokines in vitro and in 

vivo, and up-regulates anti-inflammatory cytokines, such 

as IL10 [23-27]. Since the inflammatory response 

associated with infections such influenza, pneumonia and 

sepsis increases both clinical severity and mortality, the 

ability to reduce inflammation may allow vitamin D to 

decrease mortality and disease burden in certain 

infections [28-31]. 

Notwithstanding the width of possible vitamin 

D application field, which being known now, large-scale 

clinical trials are still demanded. 

Our review has the aim to summarize current 

scientific understanding of Vitamin D3 effects on the 

immunological field with the focus on its capacity to 

enhance the anti-infection and anti-inflammatory 

immune reactivity. 

 

Vitamin D – the innate and adoptive immunity 

modulator. 

In a cross-sectional analysis serum 25(OH)D 

levels were found to be significantly lower in critically ill 

septic patients. This was associated with decreased 

concentrations of the antimicrobial protein cathelicidin 

[32]. This finding supports the theory that the vitamin D 

status regulates antimicrobial protein levels of innate 

immune cells and may be crucial in infection control. 

Dendritic cells (DC) are also important targets for the 

immune modulatory effects of vitamin D. Different 

studies have shown that calcitriol and its analogs can alter 

function and morphology of DC to induce a more 

tolerogenic, immature state [33-36]. Immature DC are 

characterized by decreased levels of MHC class II and 

co-stimulatory molecule expression (CD40, CD80, 

CD86), which leads to reduced antigen presentation 

accompanied by a lower IL12 secretion but an increased 

production of the tolerogenic interleukin IL10. Calcitriol 

has also been described to inhibit T cell cytokines such 

as IL2 and IL17 and toll like receptors on monocytes 

[37]. High-dose calcitriol supplementation in healthy 

humans (1 μg twice daily for 7 days) leads to a significant 

reduction of the proinflammatory cytokine IL6 produced 

by peripheral mononuclear cells [38]. It is likely that a 

combination of these effects results in the induction of 

potential regulatory T cells which are crucial for 

controlling immune responses [39]. In vitro data are also 

supported by results from VDR and CYP27B1 knockout 
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mice which show significantly increased numbers of 

mature DC and abnormal DC chemotaxis [40]. 

Early studies of vitamin D effects on human 

adaptive immune cells demonstrated an expression of the 

nuclear VDR as well as vitamin D-activating enzymes in 

both T- and B cells [41]. Actually, VDR expression by 

these cells is very low in resting conditions but upon 

activation and proliferation, T- and B cells up-regulate 

VDR expression significantly, allowing regulation of up 

to 500 vitamin D responsive genes which influence 

differentiation and proliferation. In B cells, 

antiproliferative effects of vitamin D3 such as inhibition 

of differentiation, proliferation, initiation of apoptosis 

and decreased immunoglobulin production were initially 

considered to be exclusively indirectly mediated by CD4+ 

cells [42]. More recent studies confirmed additional 

direct effects of vitamin D3 on B cell function, including 

inhibition of memory- and plasma-cell generation, as 

well as promotion of immunoglobulin-producing B cells 

apoptosis [43]. This control on B cell activation and 

proliferation may be clinically important in autoimmune 

diseases as B-cells producing autoreactive antibodies 

play a major role in the pathophysiology of 

autoimmunity. 

T cells, is also thought to be an important target 

for the immune modulatory effects of vitamin D different 

forms. Four potential mechanisms by which vitamin D 

may influence T cell function have been proposed. There 

are direct, endocrine effects on T cells mediated via 

systemic calcitriol; direct, intracrine conversion of 

25(OH)D to calcitriol by T cells; direct, paracrine effects 

of calcitriol on T cells following conversion of 25(OH)D 

to calcitriol by monocytes or dendritic cells and indirect 

effects on antigen presentation to T cells mediated via 

localized APC affected by calcitriol [44]. Vitamin D 

exposure leads to a shift from a proinflammatory to a 

more tolerogenic immune status, including very diverse 

effects on T cell subtypes. Thus, vitamin D3 suppresses 

CD4+ cell proliferation, differentiation and modulates 

their cytokine production [45]. In particular, treatment of 

T cells with calcitriol or analogs inhibits the secretion of 

proinflammatory Th1 (IL2, IFN-γ, TNFα), Th9 (IL9) and 

Th22 (IL22) cytokines [46-48], but promotes the 

production of more anti-inflammatory Th2 cytokines 

(IL3, IL4, IL5, IL10) [49]. IL17 producing Th17 cells are 

also affected by vitamin D. Recently, calcitriol was found 

to directly suppress IL17 production on a transcriptional 

level and activated human T-cells exposed to calcitriol 

produced significantly decreased levels of IL17, 

interferon-γ and IL21 [50, 51]. The same study also 

revealed a change towards a tolerogenic phenotype, 

including increased expression of genes typical for 

regulatory T cells (Tregs), by adding a combination of 

calcitriol and IL2 to human primary T cell cultures. Tregs 

act to suppress proinflammatory responses by other 

immune cells and aim to prevent exaggerated or 

autoimmune responses [52]. Tregs can be induced and 

stimulated by vitamin D in an indirect pathway, via APC, 

including the group of DC which stay in an immature 

state upon vitamin D treatment and therefore present less 

antigens. The direct pathway acts via systemic calcitriol 

effects or intracrine conversion of 25(OH)D to calcitriol 

by Tregs themselves. Administration of calcitriol to renal 

transplant recipients expanded the circulating Treg 

population [53]. In the subsequent randomized, placebo 

controlled trial in healthy subjects, the percentage of 

Tregs in peripheral blood increased significantly after 

supplementation with high doses of cholecalciferol [54, 

55]. Using cholecalciferol supplementation as adjunctive 

therapy in new onset T1D patients, the percentage of 

peripheral Tregs increased, although there was no 

significant difference in Tregs percent between placebo 

and treatment group after 1 year of supplementation [56]. 

These results suggest that vitamin D may 

support the innate and adaptive immune system and 

could also provide a safe and useful future therapy to 

support immune tolerance in autoimmune diseases or 

following transplantation. 

 

Vitamin D3 supplementation 

Though some prospective studies suggest that 

vitamin D plays a positive role in various infectious 

processes including tuberculosis, influenza and HIV, 

chronic obstructive pulmonary disease exacerbations and 

sepsis [57-59].  

The last 10 years of vitamin D application trials 

are focused on its role in various pulmonary diseases. A 

majority of these researches studied respiratory tract 

infections and exacerbations linked to them, pneumonia 

and tuberculosis. 

The placebo, randomized, double blind, single 

center trial (280 postmenopausal women) that started in 

2007 and continued for 3 years shows that 

supplementation of vitamin D3 in a daily dose 800 IU for 

2 years and 2000 IU for 1 year decreased cold and 

influenza symptoms and self-reported respiratory tract 

infections [60].  

Another placebo, randomized, double blind, but 

multicenter trial (430 healthy children) started in 2010 

suggested that daily implication of vitD3 (1,200 IU) for 

3 month leads to the decreasing of influenza A incidence 

and asthma attacks in children with asthma [61]. Majak 

in not very wide placebo, randomized, double blind, 

single center research (48 children with new asthma) 

shows that daily 500 IU of D3  for 6 month helps to 

increase lung function, minimize the score of asthma 

symptoms and number of asthma exacerbations due to 

respiratory tract infection [62].  

Bergman in 2012 in placebo, randomized, 

double blind, single center trial proposed 4000 IU of D3 

daily for 1 year to 140 participants with an antibody 

deficiency or participants who have had more than 4 

respiratory tract infection episodes during the year. This 

scheme helps to decrease the rate of infection and number 

of days on antibiotics by 50 % [63]. Camargo in 2012 

successfully used daily D3 in a dose 300 IU to 247 

healthy ~ 10 years-old children for minimizing 

respiratory tract infection episodes [64]. In patients with 

moderate to very severe chronic obstructive pulmonary 

disease implication of 100,000 IU of vitamin D3 with 

monthly intervals resulted in improvement in lung 

function, rates of exacerbation, morbidity and mortality, 

although positive results were limited to participants who 

were vitamin D deficient at baseline [65]. Cystic fibrosis 
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patients who received a single 250,000 IU dose of 

vitamin D3 while hospitalized experienced a significant 

increase in hospital-free days during the year and 50,4 % 

decrease in TNFα concentrations up to 12 weeks [43]. 

 

Vitamin D and Tuberculosis 
Vitamin D has been widely studied in the 

prevention and treatment of tuberculosis. Current studies 

were focused on how calcitriol enhances the 

antimicrobial effects of macrophages and monocytes – 

important effector cells, fighting against pathogens such 

as Mycobacterium tuberculosis (MBT). Besides 

enhancing chemotaxis and phagocytic capabilities of 

innate immune cells [66], the complex of calcitriol, VDR, 

and retinoid X receptor directly activates the 

transcription of antimicrobial peptides such as defensin 

β2 (DEFB) and cathelicidin antimicrobial peptide 

(hCAP18) [67-69]. In detail, monocytes exposed 

to MBT show a strong induction of the 1α-hydroxylase 

CYP27B1 and the vitamin D receptor after recognizing 

pathogens by toll-like receptors, leading to a direct 

modulation of gene expression, favoring production of 

cathelicidin [70]. Besides TLR-signaling, other cytokines 

such as interferon-γ or IL-4 have been found to also effect 

CYP27B1 expression [71]. Human cathelicidin 

(hCAP18) which is cleaved from LL-37 (37-residue 

active cationic peptide) and then causes destabilization of 

microbial membranes, is up-regulated in response to 

infections in humans and also acts against bacteria, 

viruses and fungi [19]. 

Several studies tracked the impact of vitamin D 

on cytokines that promote anti-MTB activity and the 

resolution of infection. Suppression of antigen-

stimulated pro-inflammatory cytokines, attenuation of 

anti-inflammatory cytokines, and a more rapid treatment-

induced resolution of lymphopenia and monocytosis 

associated with TB infection occurred following 100,000 

IU doses of vitamin D3 given monthly for 4 

months [72].The trial that studied tuberculosis (TB) 

prevention showed a single dose of 800 IU of vitamin 

D3 to cause a significant increase in anthropometric 

measurements and a 59 % reduction in tuberculin skin 

test conversion rates when given to children for 6 

weeks [73]. Some papers discussed vitamin D both as an 

adjunct to antibiotic treatment for TB and in its ability to 

direct killing of MBT [74-76]. Vitamin D implication led 

to clinical improvements in several studies, including: 

weight gains (in adults who received two doses of 

600,000 IU of vitamin D3 and children received daily 

doses of 1000 IU for 8 weeks [76, 77], less tissue 

involvement was observed after 1,000 IU daily use 

during 2 months and chest x-ray after 5,000 IU of vitamin 

D3 daily for 3 months. Conversely, no improvement on 

x-ray was seen in children receiving daily doses of 

vitamin D (1,000 IU over 2 months [77] or adults 

receiving daily of 10,000 IU for 6 weeks [78] or monthly 

implication of 50,000 IU given twice doses of vitamin D3 

[79].  

Conversion of sputum smear or sputum culture 

was used to measure response to treatment in several 

studies, though only sputum culture conversion is 

independently linked to long-term risk of treatment 

failure and relapse [80]. Also it was found [78] that 

10,000 IU of vitamin D3 given daily for 6 weeks to 

significantly increase sputum smear conversion (100 % 

in the treatment group vs. 76,7 % in the placebo group, 

p=0,002). 

IFN-γ levels were impacted variably: 2 doses of 

vitamin D3  (600,000 IU)) led to increasing of IFN-γ 

expression [76], while a single 100,000 IU dose of 

vitamin D2 showed no change [75].  

In the result of another trial (95 patients) was no 

effect on time to sputum culture conversion after 

adjusting for multiple baseline factors (35 vs 46,5 days, 

p≤0,05), but vitamin D accelerated normalization of 

erythrocyte sedimentation ratio and serum C-reactive 

protein in this population. Vitamin D also reduced 

chemokine production, but it had no effect on IFN-γ [72]. 

Two studies evaluated vitamin D in combination 

with another chemical thought to modulate activity 

against MTB; 5,000 IU of vitamin D3 given for 4 days 

alone or in combination with phenylbutyrate induced 

both circulating levels and transcript expression of the 

anti-microbial peptide LL-37 [81], while 50,000 IU 

doses with or without l-arginine (for NO production 

promotion) showed no significant change in sputum 

culture conversion rate or x-ray involvement [79].  

Negative results in some studies could be 

explained by variability of the Taq1 vitamin D receptor 

genotype polymorphism. It was shown that significantly 

accelerated conversion is appropriate of patients who 

have a tt genotype compared to those with 

the Tt or TT genotype. 

Thus one study reported a significant benefit of 

vitamin D evident in 12 subjects with the tt Taq1 VDR 

genotype, with proportions culture positive at week 8 of 

0 % and 57 % in the vitamin D and control arms, 

respectively [75]. There was no benefit of vitamin D in 

other VDR genotypes. These results were not confirmed 

by the study, where were founded no effect of VDR 

genotype on vitamin D in an analysis that included 30 tt 

genotype subjects. In this trial was carried out a subset 

analysis in 18 patients who were found after enrollment 

to have multidrug-resistant-tuberculosis. Treatment with 

second-line drugs began after a mean of 51 days for 

placebo recipients and 62 days for vitamin D recipients. 

Six of 10 recipients remained culture positive at week 8 

in the placebo arm versus 1 of 8 in the vitamin D arm 

[75]. 

As a resume, vitamin D given largely as an 

adjunctive therapy with traditional anti-tuberculosis 

regimens in a variety of dose and dosing schedule has 

some impact on clearance of M. tuberculosis from 

sputum in the wide number randomized controlled 

multicenter trials of patients with active tuberculosis 

infection. Patients with infection of MBT with different 

strains of tuberculosis can take benefits from Vitamin D3 

consumption due to its effect on the clearance of MTB 

from sputum and on dampening the inflammatory 

response or anthropometric changes that may help 

tuberculosis patients recover. A significant 

microbiologic effect of vitamin D3 was indicated in 

several trials that, also, sustained by in vitro tests, where 

its antimycobacterial effects in cultured macrophages 
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was shown. Antimycobacterial effect is provided 

enhances the expression of the anti-microbial peptide 

human cathelicidin (hCAP18) in cultured macrophages 

[82]. The clinical benefit after high vitamin D3 doses 

administrating to patients does not depend of their 

vitamin D3 marked deficiency. The cause of this variation 

remains unexplained. The Role of genetic 

polymorphisms in the vitamin D receptor, or in the 

multiple enzymes involved in its metabolism in vitD3 

effectiveness remains unproved. Measurement of 

calcitriol-induced antimycobacterial activity in ex vivo 

whole blood culture in future studies may help in 

understanding the functional effects of specific genetic 

polymorphisms. So, big attention will be required in 

future studies to determine mechanism of vitamin effect 

on patients with tuberculosis. 
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VITAMIN D3: RESEARCH BREAKTHROUGHS 

AND THERAPEUTIC USE 

Pohorila М.S., Martynov A.V., Romanova E.А., 

Іgumnova N.І., Sidorenko Т.А., Yukhimenko V.І., 

Shcherbak O.M. 

Vitamin D3 (cholecalciferol), the natural form of 

vitamin D, is produced in the skin from 7-

dehydrocholesterol. The synthesis of vitamin D in the 

skin is the most important source of vitamin D. Vitamin 

D can also be taken through nutrition, in the diet, but it 

is present in only a few food sources, containing 

relevant levels of vitamin D. 1,25-dihydroxyvitamin 

D3 [1,25(OH)2D3] is the hormonally active form of 

vitamin D.  Novel researches show it generates a 

number of extraskeletal biological responses including 

inhibition of variety types cancer progression, effects on 

cardiovascular disorders and mediates a protection 

against a number of inflammatory, autoimmune and 

infection diseases The biological actions of 

1,25(OH)2D3 are mediated by the VDR. The genomic 

mechanism of 1,25(OH)2D3 action involves the direct 

binding of 1,25(OH)2D3 activated VDR/RXR to specific 

DNA sequences  in and around target genes resulting in 

either activation or repression of transcription [7] VDR 

modulates the expression of genes involved in immune 

function and cytokine production. The VDR and 

CYP27B1, the enzyme located in kidneys and target 

organs, are present in immune competent cells, 

bronchial and pulmonary epithelial cells, among others, 

and is up-regulated following the ligation of specific 

toll-like receptors by extracellular pathogens, 

implicating vitamin D in innate immunity. By binding 

the VDR, calcitriol induces several endogenous 

antimicrobial peptides (AMP) in monocytes, neutrophils 

and epithelial cells including cathelicidin LL-37, α-

defensin, β defensing and neutrophil gelatinase-

associated lipocalin and up-regulates nitric oxide (NO) 

synthase. Since the inflammatory response associated 

with infections such influenza, pneumonia and sepsis 

increases both clinical severity and mortality, the ability 

to reduce inflammation may allow vitamin D to 

decrease mortality and disease burden in certain 

infections. Notwithstanding the width of possible 

vitamin D application field, which being known now, 

large-scale clinical trials are still demanded. Our review 

has the aim to summarize current scientific 

understanding of Vitamin D3 effects on the 

immunological field with the focus on its capacity to 

enhance the anti-infection and anti-inflammatory 

immune reactivity. Vitamin D and Tuberculosis. 

Vitamin D has been widely studied in the 

prevention and treatment of tuberculosis. Current 

studies were focused on how calcitriol enhances the 

antimicrobial effects of macrophages and monocytes – 

important effector cells, fighting against pathogens such 

as Mycobacterium tuberculosis (MBT). Several studies 

tracked the impact of vitamin D on cytokines that 

promote anti-MTB activity and the resolution of 

infection. Suppression of antigen-stimulated pro-

inflammatory cytokines, attenuation of anti-

inflammatory cytokines, and a more rapid treatment-

induced resolution of lymphopenia and monocytosis 

associated with TB infection occurred following 

100,000 IU doses of vitamin D3 given monthly for 4 

months. Conversion of sputum smear or sputum culture 

was used to measure response to treatment in several 

studies, though only sputum culture conversion is 

independently linked to long-term risk of treatment 

failure and relapse. Also it was found  that 10,000 IU of 

vitamin D3 given daily for 6 weeks to significantly 

increase sputum smear conversion (100 % in the 

treatment group vs. 76,7 % in the placebo group, 

p=0,002). IFN-γ levels were impacted variably: 2 doses 

of vitamin D3  (600,000 IU)) led to increasing of IFN-γ 

expression , while a single 100,000 IU dose of vitamin 

D2 showed no change .  Negative results in some studies 

could be explained by variability of the Taq1 vitamin D 

receptor genotype polymorphism. It was shown that 

significantly accelerated conversion is appropriate of 

patients who have a tt genotype compared to those with 

the Tt or TT genotype. But these results were not 

confirmed by another study, where were founded no 

interaction between VDR genotype effectiveness of 

vitamin D.  Several trials show vitamin D given largely 

as an adjunctive therapy with traditional anti-

tuberculosis regimens in a variety of dose and dosing 

schedule has some impact on clearance of MBT from 

sputum in the wide number randomized controlled 

multicenter trials of patients with active tuberculosis 

infection. Patients with infection of MBT with different 

strains of tuberculosis can take benefits from Vitamin 

D3 consumption due to its effect on the clearance of 

MTB from sputum and on dampening the inflammatory 

response or anthropometric changes that may help 

tuberculosis patients recover. A significant 

microbiologic effect of vitamin D3 was indicated in 

several trials that, also, sustained by in vitro tests, where 

its antimycobacterial effects in cultured macrophages 

was shown. Antimycobacterial effect is provided 

enhances the expression of the anti-microbial peptide 

human cathelicidin (hCAP18) in cultured macrophages. 

The clinical benefit after high vitamin D3 doses 

administrating to patients does not depend of their 

vitamin D3 marked deficiency. The cause of this 

variation remains unexplained. The role of genetic 

polymorphisms in the vitamin D receptor, or in the 

multiple enzymes involved in its metabolism in vitD3 

effectiveness remains unproved. Measurement of 

calcitriol-induced antimycobacterial activity in ex vivo 

whole blood culture in future studies may help in 

understanding the functional effects of specific genetic 

polymorphisms. So, big attention will be required in 

future studies to determine mechanism of vitamin effect 

on patients with tuberculosis.  
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