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3acmocosano emnipuunuli Kpumepii HACMAHHS ABMO-
banancysanns 0N eHYUK020 0CECUMEMPUHHOZO POMO-
pa, wo 6anancyemvcs n RACUBHUMU A6MOOANAHCUPAMU
0y0v-si020 muny. Bcmanogaeno, wo asmodanancysanms
Mosice 8100y8amucs mibKu Ha WEUOKOCMAX, W0 Nepesu-
WYIOMs N-10 KpUMuUUHY WEUOKICMb 00epmants pomopa.
3natideno dianazonu Kymoeux weuodxocmeii odepmanms
pomopa, HA AKUX HACMYnamume A6MOOANAHCYEAHHS.
3anponoHoeano cnocodu oNMUMAILHOZ0 6ANAHCYBAHHS
2HYUK020 pomopa

Kmouosi crosa: enyuxuii pomop, nacuenuii aemoéa-
Jancup, asmoodanancysants, Kpumepii HACMAanHsa asmo-
banancysanns, Kpumuini WeUOKOCMI eHYHK020 Pomopa
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IIpumenen smnupuneckuit Kpumepuii HacmMynienus
asmooanancupoeku 0as 2ubKoz0 0CeCUMMEMPUUHOZ0
pomopa, 6anancupyemozo n nACCUGHbLIMU A6MOOANAN-
cupamu 1106020 muna. Yemanoeaeno, wmo aemooana-
cupoeka molicem nPoucxooums moJbko Ha CKOPOCMAX,
NPeLIUAOUWUX N-10 KPUMUMECKYIO CKOPOCMb 6pauieHust
pomopa. Haiidenvt duanaszonvt yenoevix ckopocmeti epa-
wenus pomopa, nHa Komopvix Gyoem nacmynamo aémo-
oanancupoexa. Ilpednosicenvt cnocobvl onmumanvioi
banancuposxu pomopa

Kmiouesvie cnoea: aubkuii pomop, naccuéislii asmo-
banancup, asmobanaicuposka, xpumepuii nacmynjie-
HUA A8MoOGaANANCUPOBKU, Kpumu1ecKue ckopocmu 2ubro-
20 pomopa
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Dynamics of rotors without auto-balancers is described

Many rotors of aircraft engines, gas turbine engines of
power plants, agricultural machines, etc. work at speeds
above the first critical one, and therefore behave as flex-
ible [1, 2]. The form and unbalance of the flexible rotor
depend on the current speed. In addition, during the
operation of such rotors, their unbalance can change due
to temperature, wear, dirt sticking, etc. Therefore, it is ex-
pedient to constantly balance flexible rotors in motion, in
the process of exploitation, by passive auto-balancers [3].
For application of passive auto-balancers, it is necessary to
know whether it is possible in principle and on what rotation
speeds to balance the flexible rotor installed on the certain
supports by them in motion.

by rather difficult differential equations of motion [1-5].
Introduction of auto-balancers (masses movable relative to
the rotor) to the system makes the equations even more com-
plicated [3, 6—16]. Therefore, an analytical determination
of the conditions for the occurrence of auto-balancing is a
complex mathematical problem.

Analytically, the conditions for the occurrence of au-
to-balancing are determined in [3—16]. At the same time, the
most general conditions applicable for auto-balancers of any
type and with any number of corrective weights, are received
using the empirical criteria [3—5].

Thus, it is actual to find the conditions for the occurrence
of auto-balancing in the case of balancing of the flexible
massive rotor by any number of auto-balancers of any type.




2. Literature review and problem statement

In detail, the empirical criteria (for the occurrence of
auto-balancing or stability of main motions) and the history
of their development are described in [4]. In accordance
with the criteria, the possibility of the occurrence of auto-
balancing is determined by the rotor response to the ele-
mentary unbalances applied in the planes of correction (au-
to-balancers). As a consequence, if within the certain rotor
model framework the rotor dynamics had been analytically
investigated, then it is possible to analytically determine
the conditions for the occurrence of auto-balancing without
derivation of the equations of motion of the rotor with au-
to-balancers.

The efficiency of the empirical criterion for the occurrence
of auto-balancing is shown in [4] for a rigid rotor with a fixed
point and isotropic elastic support, and [5] for a rigid rotor
on two isotropic elastic supports. At the same time, in [5],
the results that generalize the results of the papers [6, 7] by
extending them for the case of any number of auto-balancers
of any type with many corrective weights were obtained.

Let us examine in more detail how deeply the possibility
of balancing a flexible rotor by passive auto-balancers is
investigated.

In [8], the problem is set to determine the conditions for
the occurrence of auto-balancing for the flexible rotor, sup-
ported by two spherical bearings, during the rotor balancing
by several two-ball balancers. The rotor was modeled as a
rotating Euler-Bernoulli beam. To solve the problem, the sta-
bility of such motions of the system in which the balls elimi-
nate the rotor deflections in the correction planes was inves-
tigated. Because of the complexity of the problem, the case
of the rotor balancing by a single two-ball balancer located
in the middle of the rotor was investigated. It was found that
auto-balancing occurs at speeds above odd critical rotor
speeds and below even critical speeds of this rotor with an
intermediate support in the auto-balancer plane. Without
carrying out the research, the assumption was made that in
the case of two auto-balancers, the auto-balancing occurred
at speeds above even critical speeds of the rotor and below
odd critical speeds of this rotor with intermediate supports
in the planes of the auto-balancers.

In [9], the dynamics and stability of the unbalanced flex-
ible shaft-disk system equipped with the auto-balancer with
two balls are investigated. It has been determined that the
regions of the auto-balancing stability are at supercritical
shaft speeds between each flexible mode. These are the nar-
rower regions of rotor speeds at which auto-balancing occurs
than the regions found in [8].

In [10], a mathematical model of a massive two-support
rotor with one disk mounted on a shaft in any place is con-
structed. The model takes into account the gyroscopic effect
of the disk. In [11] the similar model is constructed in the
case when in the disk plane there is a two-ball balancer. It
is established that during the passing of the regular critical
speed of the rotor, auto-balancing occurs, and with ap-
proaching (from below) the next critical speed, it disappears.
This agrees with the results of [9].

In [12—14], it is shown that auto-balancers can balance
the flexible rotor only partially. Herewith, the auto-balanc-
ers eliminate rotor deflections only in their planes. In [12],
the flexible rotor was modeled as a massive elastic shaft, on
which N two-ball balancers were mounted.

In work [13], the flexible rotor was modelled as several
massive disks mounted on a weightless elastic shaft. One of
the disks is statically unbalanced. With this or another disk,
a two-ball balancer is combined. It was found that when
auto-balancing occurs, the accuracy of balancing increases
with the approach of the auto-balancer to the unbalanced
disk. In [14], unlike [13], a dynamically unbalanced disk
and two auto-balancers from different sides of the disk are
mounted on a weightless shaft. It was established that the
auto-balancers cannot completely balance the disk and elim-
inate shaft deflections. However, the accuracy of balancing
increases with the approach of auto-balancers to the disk.

If in [8—14], the task of decreasing the rotor deflections
in the planes of auto-balancers was set, in [15], the task of de-
creasing the support reactions was set. In [15], the possibil-
ity of balancing of the flexible rotor on two supply supports
by two ball balancers located near the supports was proved.

It is shown that auto-balancing occurred on above reso-
nance rotor speeds. It is established that auto-balancing can
be violated due to a lack of balancing capacity of auto-bal-
ancers in the vicinity of the rotor critical speeds. In [16], the
transient processes that occur in such balancing of the rotor
were evaluated.

Thus, for today it is not investigated how to balance a
flexible massive rotor by any number of passive auto-bal-
ancers of any type. Ranges of rotor speeds at which the
auto-balancing will occur are not found. Below it is inves-
tigated using the empirical criterion for the occurrence of
auto-balancing.

3. The purpose and problems of the research

The purpose of this work is to receive conditions under
which one and more passive auto-balancers of any type will
balance a flexible massive axisymmetric rotor.

To achieve this purpose, it is necessary to solve the fol-
lowing research problems:

— to construct the physical and mathematical model of a
flexible axisymmetric rotor of constant section, supported by
two spherical bearings, with the elementary rotor unbalanc-
es applied at future points of suspension of auto-balancers;

—using the empirical criterion for the occurrence of
auto-balancing to receive the functionality defining the con-
ditions for the occurrence of auto-balancing;

— to find the conditions for the occurrence of auto-bal-
ancing and to generalize them for the case of the rotor of
variable section and another type of rotor fixing;

—to find optimum methods of balancing of the flexible
rotor by passive auto-balancers.

4. Methods of searching the conditions for
the occurrence of auto-balancing

The empirical criterion for the occurrence of auto-bal-
ancing is used [13]. The criterion is intended to answer the
question — whether it is possible in principle and under what
conditions to balance automatically a particular rotor by n
passive auto-balancers of any type. According to the criteri-
on, for the occurrence of auto-balancing it is necessary and
sufficient that at any elementary unbalances the condition
is satisfied:
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where t is the time; §; is the elementary rotor unbalance ly-
ing in the j™ correction plane and applied at the correspond-
ing point j on the longitudinal axis of the rotor /j=1,n/;
T, is the vector of deviation of the point j from its position in
the motionless rotor, caused by elementary rotor unbalanc-
es §,,..,5,; T is the period in case the motion is periodic or
another characteristic time interval (time of one or several
rotations of the rotor, long interval of time, etc.).

The criterion is applied in the following sequence:

1) the physical-mechanical model of a rotor with the el-
ementary rotor unbalances applied at the future suspension
points of auto-balancers, is described;

2) differential equations of motion of the rotor are de-
rived (or equations of the steady-state motion);

3) the steady-state motion of the rotor is searched for;

4) a functional of the criterion for the occurrence of au-
to-balancing is built;

5) conditions for the occurrence of auto-balancing are
determined from the condition of negativity of the functional.

Let us note that, as a rule, the functional of the crite-
rion is a quadratic form of the elementary unbalances. The
negative definiteness of this form can be investigated using
Sylvester’s criterion.

The research is conducted on the example of an axisym-
metric rotor of the constant section mounted on two fixed
hinge supports. The received results are generalized for
rotors with other types of fixing.

5. Results of the research to determine the conditions for
the occurrence of auto-balancing for a flexible rotor

5. 1. Description of the physical-mechanical model of
the flexible rotor

Fig. 1 shows the scheme of a homogeneous flexible rotor
supported by two spherical bearings, length L and linear
mass m=pA, where p is the specific density of the rotor ma-
terial, and A is its cross-sectional area. Without
loss of generality, we assume that the rotor bends
in one plane. From the left support in the direc-
tion of the right support, we draw the axis x.
In the rotor bending plane, we draw the axis v
perpendicular to the axis x.

At distances x; from the left support, the in-
dependent elementary unbalances s, /j=1n/,
lying in the rotor bending (x, v) plane are ap-
plied to the rotor.

Fig. 1. Motion of the flexible rotor supported by
two spherical bearings

5. 2. Differential equation of the steady-state rotor
motion

The differential equation of the steady-state rotor motion
without taking into account the gyroscopic effect has the
form [1]:
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where EJ is the bending rigidity of the rotor; v is the trans-
verse deflection of the rotor in the (x, v) plane at a distance x
from the left support; ® is the rotor angular speed; 8 is the
Dirac’s delta function.

The principal functions and natural frequencies of the
rotor [1]

nik
v (x)= smTX, o, =

B K
pA L

, k=12../. (3)

It follows from (3) that the critical speeds of the rotor
rapidly increase with respect to k, with each successive
speed much greater than the previous ones.

The rotor flexural modes are shown in Fig. 2.

The decomposition of the elementary unbalance s, over
the principal functions has the form
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is the amplitude of the j"» modal unbalance caused by all
elementary unbalances.

The rotor modal unbalances corresponding to the rotor
flexural modes are shown in Fig. 2.

®,<<O<O, 0,<<O<O,

Fig. 2. The flexible rotor supported by two spherical bearings — the rotor

flexural modes and modal unbalances, nodal points

The notes for the case if auto-balancers are located in
different correction planes: L

1. Since the elementary unbalances s, /j=1,n/ are in-
dependent, we can choose exactly n independent amplitudes
among the amplitudes S, /k=1, 2,.../.

2. The determinant of the linear system of equations

L2,
—Lsin
L L

kx. _
N s, /k=tn/

(N

=1

for any n is not equal to zero. Therefore, as independent am-
plitudes, we can choose the first n ones — S,, S,,..., S,.

3. If the elementary unbalances are at the nodes of the
rotor flexural k™ mode (Fig. 2, k>n>1), then S,=0. At the



same time, auto-balancers do not respond to the rotor flex-
ural k™ mode and cannot in principle balance the k™ modal
unbalance.

5. 3. The law of the steady-state motion of the rotor,
which corresponds to the applied elementary unbalances

Taking into account (6), the equation of the steady-state
motion of the rotor (2) takes the form

wkx
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—w’pAv+ EJg =’ ; S, sin=r—. 8)

The law of the steady-state motion of the rotor
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k=1

v(x)=

By a direct substitution, it can be verified that the
law (9) satisfies both the equation of the steady-state mo-
tion (2) and the zero boundary conditions (v(0)=v(L)=0,
v7(0)=v"(L)=0).

5. 4. Construction of the functional of the criterion for
the occurrence of auto-balancing
From (9) we find the displacement of the section j:
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The integrand of the functional (1) takes the form
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Taking into account that this expression does not depend
on time, we obtain the following condition for the occur-
rence of auto-balancing
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Let us transform the sum
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Then the condition for the occurrence of auto-balancing
takes also such form

n
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This is a quadratic form of the elementary unbalances.

The conditions (11) or (12) can be obtained for a flexible
rotor under other its fixing conditions. Indeed, depending on
the fixing conditions, the rotor will have its principal func-
tions and natural frequencies v, (x), ®,, /k=12,../. With
their use, it will be possible to repeat the above transforma-
tions. Therefore, we will further consider the condition (11)
or (12) as general for flexible axisymmetric massive rotors.

The consequences of the condition (11):

1. Let n auto-balancers be located in different correction
planes. Then, the elementary unbalances form the first n
nonzero independent amplitudes S,, S,,..., S,. The auto-bal-
ancing occurs immediately when the rotor exceeds the nt
critical speed. The necessary condition for the occurrence of
auto-balancing is ®>w,.

2. The availability of a nonzero amplitude S,.,, /j=n/
leads to the disappearance of auto-balancing when the rotor
speed approaches (from below) the critical speed o, and
the occurrence of auto-balancing at once after exceeding
it. In this regard, there is the additional critical speed
®;: ©,<®,<w,;, upon passing which the auto-balancing
disappears.

3. The availability of a zero amplitude S,.;, /j=n/ leads
to the equality of the additional critical speed ®; and the
critical speed w,,.

jH?

5. 5. Optimal methods of balancing of a flexible rotor
by passive auto-balancers

1. Let us assume that the flexible rotor works between
the n and (n+1)" critical speeds. The task is to minimize
the rotor vibrations and maximize the auto-balancing area.

Let us determine the optimal number of auto-balancers.
The auto-balancing will occur if the number of auto-balancers
is less than or equal to n. The greater the number of auto-bal-
ancers, the greater the number of the modal unbalances the
auto-balancers will be able to balance. Therefore, for the best
rotor balancing, it is necessary to use n auto-balancers.

Let us define the optimum location of auto-balancers.
Between the critical speeds @, and o,.,, there is the addition-
al critical speed ®,: o, <®, <o, ,,, upon transition through
which the auto-balancing disappears. If the auto-balancers
are located in the nodes of the rotor flexural (n+1)" mode,
the additional critical speed will be equal to the (n+1)™
critical speed. At the same time, the auto-balancing will
occur at any rotor speed located between the n" and (n+1)"
critical speeds.

2. Let us assume that the flexible rotor works between
the n™ and (n+1)™ critical speeds. The task is to minimize the
rotor deflections by k auto-balancers, k<n.

In the case of k automatic balancers, auto-balancing
will occur immediately when the rotor speed exceeds the k™
critical speed o,.

Upon the occurrence of auto-balancing, the rotor will
behave as a rotor with intermediate hinge supports in the
planes of the auto-balancers. If the intermediate supports
(auto-balancers) are placed in the nodes of the rotor flexural
(n+1)" mode, the rotor will be the most rigid, and its deflec-
tions will be the most limited [1].



3. Let us assume that the flexible rotor works between
the n™ and (n+1)™ critical speeds. The task is to minimize the
rotor deflections by k auto-balancers, k<n, and to obtain au-
to-balancing on the widest range of the rotor angular speeds.

In this case, it is necessary to place k auto-balancers
along the rotor in the nodes of the rotor flexural (n+1)®
mode as evenly as possible. Then the auto-balancing will oc-
cur between the n* and (n+1)" critical speeds and the rotor
will be rather rigid.

6. Discussion of the obtained conditions for
the occurrence of auto-balancing

The empirical criterion for the occurrence of auto-bal-
ancing is an effective method for determining the conditions
under which auto-balancers of any type can balance a cer-
tain rotor.

The steady-state motion of a flexible axisymmetric rotor
of constant cross-section, supported by two spherical bear-
ings, with the elementary unbalances applied at the future
points of the suspension of auto-balancers is described by a
linear partial differential equation.

The functional of the criterion for the occurrence of au-
to-balancing is a quadratic form of the elementary unbalanc-
es or amplitudes of the modal unbalances. Its form will not
change at other types of fixing of the flexible rotor.

Auto-balancing of the rotor by n passive auto-balanc-
ers located in different correction planes is possible only if
the rotor speed exceeds the n™ critical speed. The number
of auto-balancers can be arbitrary. Between the critical
rotor speeds, additional critical speeds appear. Auto-bal-
ancing occurs whenever the rotor passes a critical speed
and disappears whenever the rotor passes an additional
critical speed.

If n auto-balancers are located in the n nodes of the ro-
tor flexural (n+1)™ mode, the jxn additional critical rotor
speed matches with the j(n+1)"" critical speed, /j=1, 2, 3,.../.
When balancing the flexible rotor between the n and
(n+1)" critical speeds, such number and placement of auto-
balancers are optimum. Auto-balancers at the same time
balance the first n distributed modal unbalances and do not
respond to the (n+1)™ ones.

The additional speeds are due to the installation of the
auto-balancers on the rotor. Upon transition to them, the
behavior of auto-balancers changes. At slightly lower rotor
speeds, the auto-balancers reduce the rotor unbalance, and
at slightly higher ones — increase it.

The received findings are applicable for any number of
auto-balancers of any type, and for any type of rotor fixing.
These results agree with the results obtained in [8] for the
case of one or two two-ball balancers.

The empirical criterion for the occurrence of auto-bal-
ancing makes it possible to obtain these conditions in the
“zero approximation”, since it does not take into account the
type and mass of auto-balancers.

In the future, it is planned to obtain, with the help of the
empirical criterion of the occurrence of auto-balancing, the
conditions for balancing the rotor by any number of passive
auto-balancers in the framework of:

— various flat models of the rigid rotor;

— the models of the flexible rotor on pliable supports.

At the same time, a comparison of the results received
with the use of the empirical criterion, with the known re-
sults received by other methods is planned.

7. Conclusions

The empirical criterion for the occurrence of auto-bal-
ancing is an effective method for determining the condi-
tions under which auto-balancers of any type can balance a
certain rotor. On the example of the flexible axisymmetric
rotor of constant cross-section, supported by two spherical
bearings, using this criterion, the following is established.

1. The steady-state motion of a flexible rotor with the
elementary unbalances applied at the future points of the
suspension of auto-balancers is described by a linear partial
differential equation.

2. The functional of the criterion for the occurrence of
auto-balancing is a quadratic form of the elementary unbal-
ances or amplitudes of the modal unbalances.

3. Auto-balancing of the rotor by n passive auto-balanc-
ers located in different correction planes is possible only if
the rotor speed exceeds the n' critical speed. The number of
auto-balancers can be arbitrary. Between the critical rotor
speeds, additional critical speeds appear. Auto-balancing
occurs whenever the rotor passes a critical speed and disap-
pears whenever the rotor passes an additional critical speed.

4.1f n auto-balancers are located in the n nodes of
the rotor flexural (n+1)™ mode, the jxn™ additional crit-
ical rotor speed matches with the j(n+1)" critical speed,
/i=1, 2, 3,.../. When balancing the flexible rotor between the
n'" and (n+1)" critical speeds, such number and placement
of auto-balancers are optimum. Auto-balancers at the same
time balance the first n distributed modal unbalances and do
not respond to the (n+1)™" ones.

The additional critical speeds are due to the installation
of the auto-balancers on the rotor. Upon transition to them,
the behavior of auto-balancers changes. At slightly lower
rotor speeds, the auto-balancers reduce the rotor unbalance,
and at slightly higher ones — increase it.

The received findings are applicable for any number of
auto-balancers of any type, and for any type of rotor fixing.
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