
Information technology

33

 T. Savchuk, N. Pryimak, 2017

1. Introduction

Software development is the process of computer pro-
gramming, documenting, testing, and bug fixing involved
in creating and maintaining a program [1]. A software
development process is a sequence of stages, the transition
between which has no clear boundaries. Usually, the next
stage begins upon implementation of 80–90 % of the works
of the previous stage. This is especially true of the require-
ments engineering stage when in some cases evaluation of
indeterminate forms occurs only at the end of the project.

In the description of the process of creating software
products (SP), the approaches based on data types such as
functional, relational (Z, VDM) or axiomatic (OBJ) are
preferable. These approaches facilitate software design while
being insufficient to describe the system dynamics. Other
formal approaches such as finite-state machines [2] or Petri
nets [3] allow a detailed description of the system dynamics,

but poorly describe changes in internal data during transi-
tions between states. There are approaches that well describe
both the system dynamics and processes in data, such as
Statecharts [4]. However, they are insufficiently formalized.

The outlined approaches represent the overall software
development process in dynamics, but don’t represent it at
different levels of detail that can be achieved using Markov
processes and appropriate mathematical tools.

2. Literature review and problem statement

Formalization of software use cases with the Kripke
model has been made [5]. This model is a variation of nonde-
terministic finite-state machine used in model checking to
represent the behavior of a system.

The authors [5] propose to apply a template to transform
the description of use cases into a Kripke structure [6]. This

22.	 Kwan, M.-P. Is GIS for Women? Reflections on the critical discourse in the 1990s [Text] / M.-P. Kwan // Gender, Place & Cultu-

re. – 2002. – Vol. 9, Issue 3. – P. 271–279. doi: 10.1080/0966369022000003888

23.	 Pavlovskaya, M. Feminism and Geographic Information Systems: From a Missing Object to a Mapping Subject [Text] / M. Pavlov-

skaya, K. S. Martin // Geography Compass. – 2007. – Vol. 1, Issue 3. – P. 583–606. doi: 10.1111/j.1749-8198.2007.00028.x

24.	 Hnatyuk, S. Suchasna veb-kartohrafiya ta yiyi vykorystannya u poperedzhenni y likvidatsiyi naslidkiv nadzvychaynykh sytuatsiy

(crisis mapping). Analitychna zapyska [Electronic resource] / S. Hnatyuk // Natsional’nyy instytut stratehichnykh doslidzhen’. –

Available at: http://www.niss.gov.ua/articles/806/

25.	 Kharkiv, Ukraine: Secondary cities [Electronic resource]. – Available at: https://secondarycities.state.gov/

kharkiv/#10/49.9804/36.2487

26.	 Survey123 for ArcGIS: Smarter Forms, Smarter Field Work [Electronic resource]. – Available at: https://survey123.arcgis.com/

27.	 ArcGISOnline [Electronic resource]. – Available at: https://www.arcgis.com/home/index.html

28.	 A Guide to the project management body of knowledge (PMBOK Guide) [Теxt]. – 5-th ed. – USA: Project Management Institute,

2013. – 589 p.

MODELING OF
SOFTWARE

DEVELOPMENT
PROCESS WITH

THE MARKOV
PROCESSES

T . S a v c h u k
PhD, Associate Professor*

E-mail: savchtam@gmail.com
N . P r y i m a k

Postgraduate student*
E-mail: nata.pryimak@gmail.com

*Department of Computer Science
Vinnytsia National Technical University

Khmelnytske highway, 95,
Vinnytsia, Ukraine, 21021

Запропоновано інформаційну модель процесу пошуку і
використання асоціативних правил при розробці програмно-
го забезпечення, яка може бути використана при створенні
відповідної інформаційної технології. При цьому розглянуто
формальні підходи для опису процесу розробки програмного
забезпечення. Здійснено моделювання даного процесу на різ-
них рівнях деталізації за допомогою Марковських ланцюгів

Ключові слова: Марковські процеси, Марковські ланцю-
ги, розробка програмного забезпечення, пошук асоціативних
правил

Предложена информационная модель процесса поиска и
использования ассоциативных правил при разработке про-
граммного обеспечения, которая может быть использова-
на при создании соответствующей информационной тех-
нологии. При этом рассмотрены формальные подходы для
описания процесса разработки программного обеспечения.
Осуществлено моделирование данного процесса на разных
уровнях детализации с помощью Марковский цепей

Ключевые слова: Марковские процессы, Марковские цепи,
разработка программного обеспечения, поиск ассоциатив-
ных правил

UDC 004.8
DOI: 10.15587/1729-4061.2017.103340

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 3/2 (87) 2017

34

structure may further be used for formal system verification
[7] or for automatic test case generation [5]. This approach
eliminates the gap between informal and formal require-
ments specification, which will help the users who can’t
write formal specifications.

This approach would be appropriate for use at the stage
of testing data preparation and during software testing [8],
but it can’t be applied, for example, in software design or
programming.

The authors [9] propose to formalize software use cases
by means of X-machines similar to the finite-state machines,
but have two important differences from them [10]:

– each X-machine corresponds to a certain data set
(memory content);

– transitions depend not only on input data, but are also
a function of the input value of the data set.

This formalization will provide a complete set of tests
for testing a software product. The authors demonstrate
the application of the method of transformation of use cases
into the appropriate X-machine model on the example of
the ATM.

The above formal approach to the transformation of
software use cases into different structures should be ap-
plied during software testing. However, it does not allow
the description of software development process at different
levels of detail.

In [11], the authors transform a cognitive map [12] into
the Markov model for displaying the development of cogni-
tive project analysis to obtain quantitative estimates of the
project state probabilities.

In [11], the authors consider the construction of a cog-
nitive map on the example of software development man-
agement. The resulting cognitive map of the software devel-
opment process represents the system state and transitions
between the states. Suppose that the sum of probabilities of
all states is unity, and transitions from each state to another
are incompatible events. Then such a graph can be presented
as a homogeneous Markov chain with discrete states and dis-
crete time [13]. After the completion of a directed graph that
represents the cognitive features of software development
projects with relations with delays in each of the 10 processes
(states), we obtain a Markov chain.

The above-mentioned transformation of a cognitive map
into a Markov chain allows passing from qualitative assess-
ments of the software development process to quantitative
characteristics. This provides a multi-vector overview of the
state of the project development process, but does not repre-
sent it at different levels of detail.

The authors [14] suggest designing software using UML
diagrams and Petri nets, allowing to find and fix logical
errors (looping, end labeling, dead transitions). The creation
of software products based on sharing the UML diagrams
and Petri nets is divided into several phases: selection and
development of appropriate UML diagrams, transformation
of the resulting diagrams into Petri nets, Petri nets analysis
and making necessary changes in the UML diagram accord-
ing to the analysis results.

Such transformations are appropriate in software design,
but not in considering the software development process at
different levels of detail.

The authors [15] solve the problem of predicting the
software performance index at the beginning of develop-
ment. The authors argue that the object-oriented systems
modeling language based on components – Palladio Com-

ponent Model (PCM) allows predicting the software per-
formance. However, the PCM has problems with scalability
and provides no correlation between the accuracy of results
and overhead analysis. Therefore, the authors suggest using
Queueing Petri Nets (QPNs) – an approach to formaliza-
tion, for which efficient modeling methods based on solution
technologies are available.

In [15], the authors present a formal expression of the
QPN model based on the PCM, implemented with automat-
ed transformation. Experimental data confirm that such an
approach provides high accuracy of overhead consideration
(up to 20 times lower compared to the PCM approach).

The authors [16] consider the approach to software de-
velopment – Model Driven Development (MDD), which
aims to enhance the role of modeling in software develop-
ment. The paper deals with the MDD model for the transfor-
mation of sequence diagrams into Petri nets.

The authors propose to split a sequence diagram into
blocks and represent them by means of Petri nets. Then
the blocks can be combined to create a large Petri net. This
transformation allows a free choice of Petri nets and elimi-
nates complexity in the analysis of the program developed.

The authors [17] suggest an approach based on the Mon-
te Carlo method for software reliability testing. The outlined
approach uses frequent data sets to determine the properties
of a given object, and the results represent the percentage of
software reliability. This approach is applicable to financial
or statistical analysis, software testing, troubleshooting in
chains, etc.

The approach based on the Monte Carlo method is useful
for software testing, but not for the software development
process modeling.

Table 1 shows the comparative description of the above
approaches and software development stages suitable for
them.

Table 1

Application of formal approaches to software development
modeling

Formal ap-
proach

Software development
stage

Disadvantage

Kripke structure
Test data preparation
stage Software testing

stage
Impossibility to

apply the approach
to the description

of the software
development process
at different levels of

detail

X-machines Software testing stage

Markov chain
Software development

management stage

Petri nets Software design stage

Monte Carlo
method

Software testing stage

As seen from Table 1, currently the approaches prevail
that describe the software development process only at a cer-
tain stage development and cannot represent it at different
levels of detail. Thus, there is no approach that allows using a
single mathematical tool to describe the process at different
levels of detail.

3. The aim and objectives of the study

The aim of the work is to model the software develop-
ment process using Markov chains.

Information technology

35

To achieve this aim, it is necessary to solve the following
problems:

– to develop an information model of the software devel-
opment process;

– to define the basic levels of detail of the software de-
velopment process;

– to define and model the software development stages
for each level of detail using the Markov processes.

4. Research methods for the software development process

4. 1. Development of an information model of associa-
tion rule mining and application in software development

An information model of association rule mining and
application in software development (Fig. 1) describes input
and output values of the process, as well as parameters and
variables present in it.

Let the i-th task Taski be described by the following
characteristics:

iTask = Type, Priority,Severity, Component , 	 (1)

where i 1,I,= I is the number of tasks; Type is the type of
the i-th task that has the set value {new task, improvement,
feature, defect}; Priority is the priority of the i-th task that
has a set of values {high, medium, low}; Severity is the degree
of importance of the i-th task that has the set value {critical,
moderate, minor, cosmetic}; Component is the component of
the developed software, the set value of which is dependent
on specific software.

Let the j-th developer who performs tasks, Devj be char-
acterized by the following indicators:

jDev q,e ,=
	

 (2)

where j 1, J,= J is the number of developers; q is the cost of
a working hour of the j-developer; e is the experience of the
j-developer who has the set value {junior, middle, senior,
architector}.

A set of AR found and used in software development is
described by:

ji j iTask Dev time ,∪ ⇒
ji j iTask Dev time ,∪ ∩ = ∅ 	 (3)

where
jitime is the duration of the i-th task performance by

the j-th developer.

It is necessary to develop an information technology for
association rule mining and application, with the quality of
the developed software given in specifications, for which the
following conditions are true:

j

JI

i j i
i 1 j 1

Time(Task ,Dev) time min,
− =

= →∑∑
	

 (4)

j

j

J JI

i j j i
j 1 i 1 j 1

JI

i
i 1 j 1

Q(Task ,Dev) q time

Рr time min,

= − =

− =

 
= ⋅ +  

+ ⋅ →

∑ ∑∑

∑∑ 	 (5)

	
where Time (Taski, Devj)

is the duration of software devel-

opment with the quality given in the specifications; Q (Tas-
ki, Devj)

is the cost of software development; Pr is the cost

of using technical means per 1 working hour of a software
developer (Internet, electricity payments).

Since this problem can be seen as a multi-
criteria optimization problem, two optimization
criteria were reduced to one by introducing the
efficiency criterion of AR mining and application
W as a functional of Time (Taski, Devj) and Q
(Taski, Devj):

()i j i jW W Time(Task ,Dev),Q(Task ,Dev) .=

(6)

The developed information model of the soft-
ware development process can be used in creat-
ing an appropriate information technology.

4. 2. Modeling of the software develop-
ment process with the Markov processes

The software development process can be
seen at the levels of detail (Fig. 2), each being
described the corresponding mathematical tool.

Fig. 2. Levels of detail of the software development process

The first level of detail of the software development
process shows the software product as a finite set of compo-
nents productk. These components are the programs, being
considered as a unit and performing a complete function and
used independently or as a part of a software product (SP)
(Fig. 3):

1 2 k KРroduct {product ,product ,...,product ,...,product },= (7)

where k 1,K,= K N.Î
Each component is developed independently of the oth-

er, but the functionality may depend on the performance
of other components. Such components can be developed
simultaneously and independently by different development

Fig. 1. Information model of association rule mining and application in
software development

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 3/2 (87) 2017

36

teams or in a certain order by one team of
programmers. It depends on the project
complexity and human resources involved
in the development.

Fig. 3. Graphic representation of the
first level of detail of the software

development process

The SP development process at this stage can be consid-
ered as a random process X(t), whose domain T is a discrete
set of points:

0 1t t ...,< < 	 (8)

and the state space is a discrete set of components Product. At
time tn (where n=0, 1, 2, 3...), one of the components can be de-
veloped (i. e., it can be in an appropriate state). At time tn+1, this
component can change into a different state or remain the same.

Such presentation of the software development process
at the first level of detail corresponds to the mathematical
description of the Markov chain – a random process satis-
fying the Markov property and takes a finite and countable
number of states [13]. This process can be described by the
conditional uniform distribution function:

1 N 0 N 1 N N 1F (x | x ,...,x) F(x | x),N 1,2,...− −= = = 	 (9)

The second level of detail of the SP development process
represents a detailed description of the stages of develop-
ment of a particular component. Each software component
is developed according to a specific algorithm. So, the main
steps of the algorithm are (Fig. 4).

1. Analysis.
A study of the problem is carried out and the

most important requirements to the developed
component, from the customer’s or users’ per-
spective, are identified [1].

2. Design.
The user’s requirements to the component are

transformed into detailed and specific require-
ments to the internal device and its functioning
from the programmer’s point of view [18].

3. Programming (coding, implementation).
The project is implemented in specific programming

languages using specific tools. The result of coding is a
finished component of the integrated SP suitable for imple-
mentation [18].

4. Testing.
Troubleshooting in the program and documentation

is performed and the correspondence between the created
component and its specification is determined [19].

5. Documenting.
At this stage, documentation on the finished component

from both “external” and “internal” sides is prepared [19].

At this level of detail, the development process of an
individual component can be seen as a random process X(t).
The domain T of the process is a continuous set of points
tÎT, and the state space S is a discrete set of points qlÎS,
where l 1,L.= State changes are possible at any random time
points t0<t1<…. This process is a discrete random function,
for which the one-dimensional distribution function can be
represented by [20]:

1 N N 0 N 1 0 N 1

N N N 1 N 1

F (x ;t | x ,...,x ;t ,..., t)

F(x ;t | x ;t).
− −

− −

= =
= 	 (10)

The third level of detail of the SP development process
represents a detailed description of a particular stage of
development of a specific component. One of the stages is
testing – the process of the program implementation to
detect errors or defects [21]. Basic testing steps are (Fig. 5).

1. Preparation for testing [21].
Testing planning includes the actions aimed at identify-

ing key testing purposes and objectives, the implementation
of which is necessary to achieve them.

2. Development of tests [21].
Development of tests is a process of writing test cases

and conditions based on overall testing purposes.
3. Performance of tests [22].
When performing tests, test cases based on previous test

cases are written, a test environment is prepared and tests
are started.

4. Evaluation of testing results [21].
After testing, a report that describes the defects found

is written and a decision on further bug fixing or changes in
the product code is made.

Similarly to the first level of detail, the SP development
process at this level can be considered as a random process
X(t), whose domain T is a discrete set of points

0 1t t ...,< <
		

 (11)

and the state space at this level is a discrete set lS { ,l 1,L}.= q =
State change is possible at time tn(where n=0, 1, 2, 3...) and
such a random process can be viewed as a discrete random
sequence of discrete random variables XN=X (tN), N=0,1,….
Consequently, this process is a Markov chain [12], whose
distribution function is shown in (9).

...

Рroduct

1рroduct

2рroduct

kрroduct

Kрroduct

Fig. 4. Graphic representation of stages of the second level of detail of the
software development process

Fig. 5. Graphic representation of the testing stage of the third level of
detail of the software development process

Information technology

37

Thus, each of the levels of detail of the software devel-
opment process can be modeled using the Markov random
processes. So, the first and third levels of detail are modeled
using a Markov chain, and the second one – with the dis-
crete Markov process.

5. The results of the research on modeling of the software
development process with the Markov processes

The proposed information model based on the Markov
processes was used in the development of the Riggoh soft-
ware product by the following algorithm:

1. The basic components that make up this software
product, namely, App, PEW, Notification, Admin, Configu-
ration, GPS, Archive were identified.

2. The basic stages of development of each component
were determined. As the development process takes place
using a waterfall model, it corresponds to the stages shown
in Fig. 4.

3. The basic steps of each stage were determined.
Each of the algorithm steps involved counting of compo-

nents, stages and steps, respectively.
The research revealed the following patterns:
1. In the analysis of the software development process

at the first level of detail, 7 major components that make up
the complex Riggoh software product were identified. The
number of stages and steps of the development process of the
specified software at this level is undefined.

2. The analysis of each of the 7 identified components
at the second level of detail revealed 5 basic steps (Fig. 4)
required for its implementation. The number of steps of the
development process of the specified software at this level is
undefined.

3. The analysis of each stage at the third level of detail
revealed that the stage of analysis, design and documenting
is performed in one step. The programming stage involves
the following 3 basic steps: prototyping, test writing, cod-
ing. Accordingly, the stage of testing of a software product
includes 4 major steps (Fig. 5). Thus, the development of one
component of the Riggoh software product at the third level
of detail is defined in 10 steps.

Table 2 shows the quantitative indices of modeling of the
software development process for each level of detail.

Table 2

The results of modeling of the software development process

Levels of detail
Number of

components
Number of

stages
Number of

steps

І level of detail 7 components Undefined Undefined

ІІ level of
detail

7 components 5 stages Undefined

ІІІ level of
detail

7 components 5 stages 10 steps

Thus, the process of development of the Riggoh software
product requires considering (7×5×10=350) basic implemen-
tation steps.

In addition, modeling of the software development pro-
cess with the Markov chains was performed. The modeling
has allowed representing the software development process
at different levels of detail, which can be used to develop an
appropriate information technology.

At the first level of detail, described by the Markov
chain, the number of stages and basic steps of the software
development process is undefined, so association rule mining
is impossible.

At the second level of detail, described by the discrete
Markov process, tasks are not distributed in the software
development stages, so, classification algorithms should
be used first for their separation. After tasks are classified
according to the Type parameter, relationship discovery can
be started.

At the third level of detail, defined as the Markov chain,
tasks are related to a particular stage of software develop-
ment, association rule mining can be started immediately
using appropriate algorithms [23].

Thus, the use of Markov random processes involves a
single mathematical tool to describe a multi-level complex
process of software development. Note that a random
process can be discrete or continuous at each level. As-
sociation relationships between the time needed to solve
the software development task and the respective devel-
oper would be best to seek for at the second and third le-
vels (Fig. 2).

6. Discussion of the results of the research of the
software development process modeling with

the Markov processes

As a result of the research, an information model of the
software development process was developed. Unlike exist-
ing models such as X-machines, Kripke structure, Petri nets
and Monte Carlo method, it allows describing the software
development process at different levels of detail using a sin-
gle mathematical tool.

The specified existing approaches to the software devel-
opment process modeling can be applied to software prod-
ucts based on any principle of software development. While
the proposed information model can be applied only to the
software product that is based on the waterfall development
principle, which is the main disadvantage.

The advantage of the proposed information model is
consideration of the software development process at three
levels of detail that facilitates understanding.

The research results can be applied in software devel-
opment for planning this process. Thus, a project manager,
knowing the time required to solve a certain task by a
developer with specific skills, can effectively distribute all
the tasks among team members. This takes into account
association relationships on the set terms and quality of the
designed software revealed at appropriate stages.

The proposed information model can be the basis for an
information technology of association rule mining and appli-
cation in software development.

7. Conclusions

1. An information model of the software development
process that represents the process and can be used
in creating an appropriate information technology was
developed. A feature of this model is the ability to find
relationships between tasks that arise during software
development and time necessary to perform them by a
certain developer.

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 3/2 (87) 2017

38

2. Three levels of detail of the software development pro-
cess were identified:

– the first level, representing the development of soft-
ware, which is a finite set of software components;

– the second level, representing a detailed description of
the stages of development of a particular component;

– the third level, representing a detailed description of a
certain stage of development of a particular component.

3. Modeling of the development process of the Riggoh
software product with the Markov processes at each level of
detail was defined and implemented. As a result, the informa-
tion model of the software development process was obtained.

References

1.	 Herbsleb, J. D. Global software development [Text] / J. D. Herbsleb, D. Moitra // IEEE Software. – 2001. – Vol. 18, Issue 2. –

P. 16–20. doi: 10.1109/52.914732

2.	 Aho, A. V. The Theory of Parsing, Translation, and Compiling. Vol. 1 [Text] / A. V. Aho, J. D. Ullman. – New Jersy: Prentice Hall,

1972. – P. 147–151.

3.	 Peterson, J. L. Petri net theory and the modeling of systems [Text] / J. L. Peterson. – New Jersy: Prentice Hall, 1981. – 310 p.

4.	 Harel, D. Statecharts: a visual formalism for complex systems [Text] / D. Harel // Science of Computer Programming. – 1987. –

Vol. 8, Issue 3. – P. 231–274. doi: 10.1016/0167-6423(87)90035-9

5.	 uz Zaman, Q. Formalizing a Use Case to a Kripke Structure [Text] / Q. uz Zaman, M. A. Sindhu, A. Nadeem // Software Engineering

and Applications/ 831: Advances in Power and Energy Systems. – 2015. doi: 10.2316/p.2015.829-017

6.	 Stirling, C. Modal and temporal logics [Text] / C. Stirling. – GB.: University of Edinburgh, Department of Computer Science,

1991. – P. 23–30.

7.	 Sindhu, M. Algorithms and Tools for Learning-based Testing of Reactive Systems [Text]: PhD thesis / M. Sindhu. – Stockholm,

2013. – 19 p.

8.	 Fraser, G. Using model-checkers to generate and analyze property relevant test-cases [Text] / G. Fraser, F. Wotawa // Software

Quality Journal. – 2007. – Vol. 16, Issue 2. – P. 161–183. doi: 10.1007/s11219-007-9031-6

9.	 Dranidis, D. Formal modelling of use cases with X-machines [Text] / D. Dranidis, K. Tigka, P. Kefalas // Proceedings of

the 1st South-East European Workshop on Formal Methods, SEEFM’03. – 2003. – P. 72–83.

10.	 Holcombe, M. X-machines as a basis for dynamic system specification [Text] / M. Holcombe // Software Engineering Journal. –

1988. – Vol. 3, Issue 2. – P. 69. doi: 10.1049/sej.1988.0009

11.	 Kolesnikova, E. V. Transformatsiia kognitivnyh kart v modeli markovskih protsesov dlya proektov sozdaniia programnogo obe-

specheniia [Text] / E. V. Kolesnikova, A. A. Negri // Managing the development of complex systems. – 2013. – Issue 15. – P. 30–35.

12.	 Koshkin, K. V. Kognitivnie modeli upravleniia zhilishchno-komunalnym hozaystvom kak aktivnoy sistemoy [Text] / K. V. Koshkin,

S. A. Makeev, G. V. Fomenko // Managing the development of complex systems. – 2011. – Issue 5. – P. 17–19.

13.	 Tihonov, V. I. Markovskie procesy [Text] / V. I. Tihonov, M. A. Mironov. – Мoscow: Soviet radio, 1977. – 488 p.

14.	 Markov, A. V. Sovokupnoe ispolzovanie setey Petri I UML diagram pri razrabotke programmnogo obespechenia [Text] / A. V. Mar-

kov // Sbornik nauchnyh trudov NGTU. – 2011. – Issue 2 (64). – P. 85–94.

15.	 Meier, P. Automated Transformation of Component-Based Software Architecture Models to Queueing Petri Nets [Text] / P. Meier,

S. Kounev, H. Koziolek // 2011 IEEE 19th Annual International Symposium on Modelling, Analysis, and Simulation of Computer

and Telecommunication Systems. – 2011. doi: 10.1109/mascots.2011.23

16.	 Jie, T. W. A Model Driven method to represent Free Choice Petri Nets as Sequence Diagram [Text] / T. W. Jie, M. A. Ameed-

een // 2015 4th International Conference on Software Engineering and Computer Systems (ICSECS). – 2015. doi: 10.1109/

icsecs.2015.7333104

17.	 Singh, H. Software Reliability Testing using Monte Carlo Methods [Text] / H. Singh, P. Pal // International Journal of Computer

Applications. – 2013. – Vol. 69, Issue 4. – P. 41–44. doi: 10.5120/11834-7554

18.	 Martin, R. Agile Software Development: Principles, Patterns, and Practices [Text] / R. Martin. – New Jersy: Prentice Hall,

2003. – P. 102–103.

19.	 What are the Software Development Life Cycle (SDLC) phases? [Electronic resource]. – Available at: http://istqbexamcertifica-

tion.com/what-are-the-software-development-life-cycle-sdlc-phases/

20.	 Gorban, І. Teoriia imovirnostei i matematychna statystyka dlia naukovyh pratsivnykiv ta inzheneriv [Text] / І. Gorban. –

Kyiv, 2003. – P. 90–110.

21.	 Everett, G. D. Software Testing: Testing Across the Entire Software Development Life Cycle [Text] / G. D. Everett. – Wiley-IEEE

Computer Society Press, 2007. – 280 p.

22.	 Fundamentalnii protsess testirovaniia [Electronic resource]. – Available at: http://qalight.com.ua/baza-znaniy/fundamentalny-

iy-protsess-testirovaniya/

23.	 Savchuk, T. O. Poshuk asotsiativnyh pravil dlia pryiniatiia rishen v marketyngovii diyalnosti [Text] / T. O. Savchuk, N. V. Pryy-

mak // Obmin praktychnym dosvidom ta tekhnolohiyamy. – 2015. – Issue 3. – P. 196–199.

