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1. Introduction

In practice, a problem often arises with drawing up a plan 
for transporting homogeneous productы from production 
centers to consumption centers using vehicles of various 
types. Implementation of this plan would ensure minimum 
transportation costs. It is clear that it is impossible to solve 
such a problem based on the classical transport theory since 
in the case under consideration the cost of transporting a 
unit of product depends not only on the mutual location of 
production and consumption centers but also on the type of 
transport. Also, additional restrictions on the quantity of the 
product transported by vehicles of a given type are added to 
the usual transport constraints.

This problem, as shown in [1], is a three-index transport 
problem and is solved by the known method of potentials  
[1, 2]. On the other hand, when planning transportation, 
a situation occurs when the products are delivered to con- 
sumers not directly but through intermediate centers (ware-
houses, secondary processing enterprises, etc.). The problem 
of optimizing the transportation plan corresponding to this 
situation is called a transportation problem with intermedi-
ate centers. This problem, apparently, was first formulated 
in [3] as a general transport-type problem Then it was re- 
defined as a multi-index transportation problem in [4],  
and finally, it was formulated as a transportation problem 
with intermediate stations in [5]. Necessity of taking into 
account intermediate centers and possible differences in 
assignment of their throughputs make the task nontrivial. 
In this case, nature of distribution of the overall throughput 

of the system of intermediate centers significantly affects 
magnitude of total transportation costs. This circumstance 
determines urgency of the problem.

2. Literature review and problem statement

Let us consider the known approaches to this problem 
solution. The model of this problem has the following form.

Introduce the following notation:
i I {1,2,...,m} :Î =  the numbers of product manufacturers;
j J {1,2,...,n} :Î =  the numbers of product consumers;
k K {1,2,...,r} :Î =  the numbers of intermediate centers;
Cik: the average cost of transporting a unit of product 

from the i-th producer to the k-th intermediate center;
Cjk: the average cost of transporting a unit of product 

from the k-th intermediate center to the j-th consumption 
center;

Xik: the planned volume of transportation from the i-th 
producer to the k-th intermediate center;

Xkj: the planned volume of transportation from the k-th 
intermediate center to the j-th consumption center;

ai: the total volume of products intended for transporta-
tion from the i-th production center, i∈I; 

dk: the permissible volume of transportation through the 
k-th intermediate center, k∈K; 

bj: demand for products at j-th consumption center, j∈J. 
In this notation, the problem of rational organization of 

transportation is formulated as follows: find sets {Xik}, {Xkj} 
minimizing the total average cost of transportation
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and satisfying the following constraints:
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Fulfillment of conditions (2)–(4) ensures taking out of 
all products, full satisfaction of consumer demand and ab-
sence of accumulation of products, which were not taken out 
from intermediate centers.

Constraints (4) are system-organizing constraints. At 
the same time, if the volume of traffic through intermediate 
centers is not limited, then, as it will be shown, the formu-
lated problem is reduced to a three-index transportation 
problem. On the other hand, if the set {dk} is given, and

m r n

i k j
i 1 k 1 j 1

a d b d,
= = =

= = =∑ ∑ ∑ 	  (5)

then the initial problem is divided into two independent 
subproblems:

a) find a set {Xik}, minimizing

m r

1 ik ik
i 1 k 1

R C X
= =

= ∑∑  	 (6)

and satisfying constraints (2) and also

m

ik k
i 1

X d ,
=

=∑ k 1,2,...,r;= 		  (7)

b) find a set {Xkj}, minimizing

r n

2 kj kj
k 1 j 1

R C X
= =

= ∑∑ 	 (8)

and satisfying constraints (3) and also

n

kj k
j 1

X d ,
=

=∑  j 1,2,...,n.= 	 (9)

The canonical formulation of problem (1)–(5) leads to the 
three-index problem in the following way [1], [4–6]. Introduce

Xikj: the planned volume of traffic from the i-th producer 
to the j-th consumption center through the k-th intermedi-
ate center;

Cikj=Cik+Ckj: the total average cost of transporting a 
unit of product from the i-th producer to the j-th consump-
tion center thru the k-th intermediate center.

In this case, the problem reduces to finding a set {Xikj}, 
minimizing

m r n

ikj ikj
i 1 k 1 j 1

R C X
= = =

= ∑∑∑ 	 (10)

and satisfying constraints:

r n

ikj i
k 1 j 1

X a ,
= =

=∑∑  i I,Î 	 (11)

m n

ikj k
i 1 j 1

X d ,
= =

£∑∑ k K,Î 	  (12)

m r

ikj j
i 1 k 1

X b ,
= =

=∑∑  j J,Î 	 (13)

ikjX 0,≥  i I,Î  k K,Î  j J.Î 	  (14)

The obtained problem is a three-index triplanar trans-
portation problem.

For the exact solution of the obtained problem (10)–(14), 
the method of potentials [1, 2] is used. The solution process 
consists of a preliminary stage and a finite number of similar 
iterations constituting the main stage of the algorithm work 
[1, 7–10]. At the preliminary stage, initial reference plan is 
determined. One of the known methods is used, for example, 
the method of sequential distribution. Each iteration of the 
main stage consists of two steps. At the first step, optimality 
of the reference plan obtained in the previous iteration (or 
at the preliminary stage) is determined. If the plan is opti-
mal, then the solution process ends. Otherwise, the second 
iteration step is performed in which a new reference plan is 
obtained which is closer to the optimal one.

The main drawback of this method is that the complexity 
of the computational procedure for solving triplanar prob-
lems by this method grows very rapidly with increase in the 
problem dimensionality. For real values of m, n, r, the number 
of variables in the problem is of the order 106 and the number 
of constraints is (102–103). In this case, the problem dimen-
sionality determined by the product of the number of vari-
ables by the number of constraints is of the order 108–109.

Approximate methods for solving this problem are de-
scribed in [1, 10–14]. The need to develop fairly simple ap-
proximate methods for solving transportation problems is due 
to the following circumstances. First, numerical values of the 
parameters of real transportation problems, as a rule, are not 
accurate due to random errors in their measurement and esti-
mation and due to the possible inadequacy of the linear model. 
Besides, the model inaccuracies can result from the influence 
of unaccounted factors. In a situation where initial data of 
the problem are random variables, the transportation plan 
obtained as a result of an exact solution for these data may 
appear to be not optimal. Secondly, laboriousness of solving 
multidimensional transportation problems by exact methods 
grows very rapidly with increase in their dimensionality. In 
this case, dimensionality of many real problems is so great that 
it is impossible to obtain their exact solution in an acceptable 
time even with the use of modern computing machinery.

Note that all of the above should not be understood in 
such a way that approximate methods are intended just for 
manual problem solution. An effective approximate algo-
rithm, as a rule, allows one to obtain a reference plan close to 
optimal one and therefore can be used at the initial stage of 
work of the exact algorithm in machine solution significantly 
reducing total time for obtaining the result.

Approximate methods of solving the triplanar transport 
problem considered in [1] are based on an effective choice of 
the leading index element in the transportation costs matrix. 
The simplest of them is the method of the minimal element 
in the section. The method is a modification of the method 
of sequential distribution to construct an initial reference 
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plan. In this case, the section in which the leading element 
is sought can be one-dimensional (the method of the min-
imum element in a row, column), two-dimensional or even 
three-dimensional.

In the well-known formulations of the transportation 
problem with intermediate centers, two variants of formula-
tion of constraints (4) are considered for which constraints 
(5) are fulfilled [9–13] or not fulfilled [14–16]. A natural 
complicating generalization of the original problem arises if 
the set {dk} was not specified but its components must satisfy 
the constraints (5) for all admissible plans {Xikj}.

3. The aim and objectives of the study

The study objective was to develop a method for solving 
a transportation problem with intermediate centers with 
unspecified throughputs.

In accordance with this objective, the study tasks were 
formulated:

– development of a multi-step iterative procedure for 
calculating throughputs of intermediate centers;

– development of a one-step procedure for direct calcu-
lation of throughputs.

4. Materials and methods of research. Development of 
a method for calculating throughput of intermediate 

centers

Let values of the components of the sets {ai}, {bj}, {Cik}, 
{Ckj}, i∈I, j∈J, k∈K are specified. It is required to find a set 
{dk}, k∈K, the use of which in task (6)–(9) provides a mini-
mum average transportation cost. The possible approach to 
finding a set is as follows. 

Introduce an arbitrary set {d1, d2,…, dr} of admissible vol-
ume values for intermediate centers with their components 
satisfying the constraints

r m n

k i j
k 1 i 1 j 1

d a b ,
= = =

= =∑ ∑ ∑  	 (15)

kd 0,≥  k 1,2,...,r= .	 (16)

Next, solve the problem of finding the transportation 
plans in the statement (6)–(9). Let *

ik{X },  *
kj{X }  is the corre-

sponding optimal plan which corresponds to the value of the 
total cost of transportation equal to

m r r n
* * *

ik ik kj kj
i 1 k 1 k 1 j 1

R C X C X .
= = = =

= +∑∑ ∑∑ 	  (17)

It is clear that by enumerating for {d1, d2,…, dr} and tak-
ing into account (15), (16), one can find a set of admissible 
volumes of intermediate centers for which value R* will be 
minimal.

This path is ineffective since the number of enumer-
ations increases rapidly with increase in the number of 
intermediate centers and tightening of the requirements 
for accuracy of the solution obtained. In this connection, 
consider an optimization procedure that constructively 
leads to the desired set {dk}.

Use the Nelder-Mead method. Introduce matrix I dimI= 
=r×(r+1), of the form:

0 1 2 2

0 2 1 2

0 2 2 1

ˆ ˆ ˆd d d d

ˆ ˆd d d d
I .

ˆ ˆd d d d

 
 
 

=  
 
  





    



A certain admissible distribution of the volume values 
( j)
k{d },  j=1, 2,…, r+1, for the intermediate centers corresponds 

to each column of this matrix. Solutions of a pair of transpor-
tation problems: T1 – {(6), (2), (7)} and T2 – {(8), (3), (9)}, 
determining the value of the total cost of transportation (17) 
correspond to this distribution. Specify initial distributions 
as follows:

0

d
d ,

r
=  

( )1

d
d̂ r 1 r 1 ,

r r 1
= + + -

+  ( )2

d
d̂ r 1 1 .

r d 1
= + -

+ 	

Next, assign coordinates of some point in a r-dimensional 
quotient space to the elements of each column of matrix I. 
These points define vertices of a convex polyhedron.

Parameters d0, d1, d2 are chosen so that the sum of the 
admissible volume values corresponding to each column of 
the matrix I is equal to the total volume of the transported 
product and the distances between the polyhedron vertices 
are equal to each other.

Indeed,

1 2

dˆ ˆd (r 1) d r 1 r 1 (r 1) r 1 (r 1)
r(r 1)

dr r 1
d,

r(r 1)

 + - = + + - + - + - - = +

+
= =

+

{ } { }( ) ( )1 2( j ) ( j )
k k 1 2

dˆ ˆR d , d 2 d d ,
2 r 1

= - =
+  

1j 1,2,...,r,=  2j 2,3,...,r 1.= +

The optimized objective function of the problem is de-
termined by expression (17) the value of which is calculated 
from the results obtained in solving problems (6), (2), (7) 
and (8), (3), (9).

Block diagram of the problem solution is shown in Fig. 1.
The problem solution results in a set *

k{d },  Its use ensures 
obtaining of optimal plans of transportation from producers 
to intermediate centers (plan *

ik{X }) and from intermediate 
centers to consumers (plan *

kj{X }).
The proposed technique for solving the problem of 

rational organization of transportation from suppliers to 
consumers through a system of intermediate centers can 
be effectively used in problems of low dimensionality. The 
central part of this technique is the Nelder-Mead algorithm 
which includes an independent solution of 2(r+1) transport 
problems (r is the number of intermediate centers) in each 
step. This circumstance combined with the extremely slow 
convergence of the optimization procedure, which is inher-
ent to the Nelder-Mead method leads to a catastrophically 
rapid increase in total time for solving the problem.

Reduction of this time can be achieved using the ap-
proach based on the theory of duality. As in any linear pro-
gramming problem, dual problems correspond to the above 
problems T1 – {(6), (2), (7)} and T2 – {(8), (3), (9)} [2, 17].
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In this case, the problem conjugate to T1 has the follow-
ing form: find sets {Ui}, {Vk}, i=1, 2,…, m, k=1, 2,…, r, that 
maximize the function

m r

1 i i k k
i 1 k 1

L (U,V) a U d V
= =

= +∑ ∑  	 (18)

and satisfy constraints

i k ikU V C ,+ £  i 1,2,..,m,= k 1,2,...,r.= 	  (19)

The following problem corresponds to the problem T2: 
find sets {Zk}, {Wj}, k=1, 2,…, r, j=1, 2,…, n, that maximize 
the function

r n

2 k k j j
k 1 j 1

L (Z,W) d Z b W
= =

= +∑ ∑ 		   (20)

and satisfy the constraints

k j kjZ W C ,+ £  k 1,2,..,r,=  j 1,2,...,n.= 	  (21) 

The dual problems (18), (19) and (20), (21) always have a 
solution. Moreover, if * *

1 ikX {x },=  *
i{U },  *

k{V }  are the optimal 
plans of problems (6), (2), (7) and (18), (19), then

m m r
* * *

ik ik i i k k
i 1 i 1 k 1

C x a U d V .
= = =

= +∑ ∑ ∑  		  (22)

Similarly, if * *
2 kjX {x },= *

k{Z },  *
j{W }  are the optimal plans 

of problems (8), (3), (9) and (20), (21), then

r n r n
* * *

kj kj k k j j
k 1 j 1 k 1 j 1

C x d Z b W .
= = = =

= +∑∑ ∑ ∑ 	 (23)
 

Besides, the following correlations are ful-
filled for the optimal plans of the formulated dual 
problems,

* *
i k ikU V C ,+ £  i 1,2,..,m,=  k 1,2,...,r,=  	 (24)

* *
i k ijU V C ,+ =  if *

ikx 0;>  	 (25)

* *
k j kjZ W C ,+ £  k 1,2,..,r,=  j 1,2,...,n,= 	 (26)

* *
k j kjZ W C ,+ =  if *

kjx 0.>  	 (27)

It follows that solutions of direct problems 
can be obtained from solution of dual problems. 
Indeed, let *

i{U },  *
k{V }  be solution of the dual 

problem. Substitute this solution in (24) and find 
sets *I {i }=  and *K {k },=  for which inequalities 
(24) are fulfilled as equalities. Then, in accor-
dance with (25), these sets uniquely determine 
the set { }* *i k

X  the components of which are posi-
tive and determine solution of the direct problem 
(6), (2), (7). A similar operation is performed 
with a set *

k{Z },  *
j{W }.

The iterative procedure for finding D vector 
using the Nelder-Mead method is organized as 
follows. An array of sets (1) (2) (r 1)

k k k{d }, {d },...,{d }+  is 
formed each of which contains r components, A 
pair of problems (6), (2), (7) and (8), (3), (9) is 
solved for each set (s)

k{d } .
Effectiveness of the plan corresponding to the set (s)

k{d } 
is estimated by the sum

m r r n
(s) (s) (s)

i i k k k k j j
i 1 k 1 k 1 j 1

R a U d V d Z b W .
= = = =

= + + +∑ ∑ ∑ ∑

Next, the step of the Nelder-Meade procedure is per-
formed.

This option is better than the previous one for the fol-
lowing reasons.

1. Dimensionalities of the dual problems (18)–(19) and 
(20)–(21) are smaller than those of the corresponding di-
rect problems with respect to the number of variables, e. g. 
m+k<mk, k+n<kn. 

2. Problems (18)–(19) and (20)–(21) are one-index 
unlike the two-index problems (6), (2), (7) and (8), (3), (9).

3. The techniques for solving dual problems are simpler 
than the corresponding techniques for direct problems since 
they are solved by the ordinary simplex method in one stage. 
Direct problems are structurally more complex since they 
contain an unpredictable number of iterations, each iteration 
solving the problem of forming a plan and its improvement.

Finally, consider another, seemingly most effective, ap-
proach to solving the problem of finding a rational set of 
throughputs of intermediate centers.

The idea of the proposed technique is as follows. The 
cheapest route (i–k–j) is sought for each pair (i-th supplier –  
j-th consumer). As a result, an ordinary two-index transpor-
tation problem of delivering products from the supplier sys-
tem to the consumer system arises. Solution of this problem 
contains an optimal set of transportation volumes in this 

Fig. 1. Block diagram of the problem solution  
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system. Now it only remains to totalize for each intermediate 
center the volumes of supplies passing through this center.

Describe the procedure for obtaining solution in more 
detail. 

Step: There are the following matrices 
C1=(cik): the cost of transporting a product unit from 

suppliers to intermediate centers,
C2=(ckj): the cost of transporting a product unit from the 

intermediate centers to consumers.
To find routes requiring minimum delivery costs, intro-

duce a special operation of matrix “multiplication”. Perform 
operation of “multiplication” for two square matrices A and 
B of the same dimensionality applying the rule: 

C A B,= ⊗  

ijij i1 1j i2 2 j in nj ik j ijˆc min(c c ,c c ,...,c c ) c c .= + + + = =  	 (28)

Here

ij ik kjk
k arg min{c c }.= + 	 (29)

ijĉ : minimum cost of delivery of a product unit from the 
i-th supplier to the j-th consumer.

To each pair (i, j), correlation (29) assigns number of 
the kij, station thru which it is expedient to make deliver-
ies from i to j. This correspondence is defined by formula  
S(ij)=kij.

As a result, usual two-index transportation problem is 
obtained: find a set X=(xij), that minimizes the total trans-
portation cost

m n

ij ij
i 1 j 1

ˆL(X) c x
= =

= ∑∑  	 (30)

and satisfies the constraints

n

ij i
j 1

x a ,
=

=∑  i 1,2,...,m,= 	 (31)

m

ij j
i 1

x b ,
=

=∑  j 1,2,...,n,= 	 (32)

ijx 0,≥  i 1,2,...,m,=  j 1,2,...,n.= 	 (33)

Let * *
ijX (x )=  be solution of problem (30)–(33).

Next, introduce the following set for each 
intermediate center k: 

{ }*
k ij ijM (i, j) :x 0, S(i, j) k .= > = 	 (34)

Then, for each kij, calculate the total volume 
of cargo transported through this intermediate 
center when implementing the plan X*:

k

*
k ij

(i,j) M

d x ,
∈

= ∑  k 1,2,...,r.= 	 (35)

The resulting set determines rational values 
of throughputs of the intermediate centers.

Example.
Consider a system consisting of two produc-

tion centers, three of consumption centers and 
three intermediate centers.

Set 1a 20,=  2a 30,=  1b 16,=  2b 24,=  3b 10.=
The balance condition is fulfilled:

2 3

i j
i 1 j 1

a b 50.
= =

= =∑ ∑
Diagrammatic representation of the corresponding 

transportation system together with intermediate centers is 
shown in Fig. 2.

Fig. 2. Graphic model of a transportation system

Introduce matrix of costs of transportation from suppli-
ers to intermediate centers and further to consumers:

1 2 3 4 5 6 7 8

1 0 3 6 4

2 0 5 3 8

3 0 6 4 5

4 0 2 7 6C .
5 0 6 5 2

6 0

7 0

8 0

∞ ∞ ∞ ∞
∞ ∞ ∞ ∞
∞ ∞ ∞ ∞
∞ ∞ ∞ ∞=
∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞

In this matrix, station pairs marked with symbol ∞, are 
the stations for which direct transition is impossible.

Now, use (28) to calculate matrix ij
ˆ ˆC (c )=  of minimum 

costs of transportation from suppliers to consumers:

 

2

3

4

5

6

8

1

7

4 3 5

4 3

Ĉ C C

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

1 0 3 6 4 1 0 3 6 4

2 0 5 3 8 2 0 5 3 8

3 0 6 4 5 3 0 6 4 5

4 0 2 7 6 4 0 2 7 6

5 0 6 5 2 5 0 6 5 2

6 0 6 0

7 0 7 0

8 0 8 0

1 2 3 4 5 6 7 8

1 0 3 6 4 8 7 6

2 0 5 3 8 5

= ⊗ =

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞= ⊗ =
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

∞
∞

=

49 9

3 0 6 4 5

4 0 2 7 4 ,
5 0 6 5 2

6 0

7 0

8 0

∞ ∞ ∞ ∞
∞ ∞ ∞ ∞
∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞



Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 3/4 ( 87 ) 2017

36

16 17 18

26 27 28

k 4,  k 3,  k 5,

k 4,  k 3,  k 4.

= = =
= = =

This matrix elements determining minimum cost of 
transporting a unit of cargo from suppliers to consumers also 
contain (in the bottom left corner) the number of the inter-
mediate center thru which corresponding best route passes.

The following is two examples of calculating the matrix 
elements: 

16 11 16 12 26 13 36 14

46 15 56 16 66 17 76 18 86

16

c min{c c , c c , c c , c

c , c c , c c , c c , c c }

min{ , ,3 6, 6 2, 4 6, , }

min{9,8,10} 8, k 4,

= + + + +
+ + + + + =
= ∞ ∞ + + + ∞ ∞ =
= = =

17 11 17 12 27 13 37 14

47 15 57 16 67 17 77 18 87

17

c min{c c , c c , c c , c

c , c c , c c , c c , c c }

min{ , ,3 4, 6 7, 4 5, , }

min{7,13,9} 7, k 3.

= + + + +
+ + + + + =
= ∞ ∞ + + + ∞ ∞ =
= = =

In the obtained matrix Ĉ,  a submatrix C0 containing 
minimum transportation costs from suppliers to consumers 
taking into account intermediate centers is of interest for 
further solution: 

0 4 3 5

4 3 4

6 7 8

C 1 8 7 6 .

2 5 9 9

=

Now the problem is reduced to finding a set X=(xij), i=1, 2, 
j=6, 7, 8, minimizing

2 8

ij ij
i 1 j 6

L(X) C x ,
= =

= ∑∑

and satisfying the constraints

8

1j
j 6

x 20,
=

=∑
 

8

2 j
j 6

x 30,
=

=∑
 

2

i6
i 1

x 16,
=

=∑
 

2

i7
i 1

x 24,
=

=∑
 

2

i8
i 1

x 10.
=

=∑

Solution of this priblem:

0 10 10
X .

16 14 0

 
=   

Use this solution to calculate values of throughput of 
intermediate centers using formulas (34), (35).

{ }3M (1,7),(2,7) ,=  

{ }4M (2,6) ,=  

{ }5M (1,8) .=

3

3 ij 17 27
(i,j) M

d x x x 24,
Î

= = + =∑  

4

4 ij 26
(i,j) M

d x x 16,
Î

= = =∑  

5

5 ij 18
(i,j) M

d x x 10.
Î

= = =∑

Solution is over.

5. Discussion of results of development of calculation 
methods. Estimation of effectiveness of the proposed 

methods for distribution of the intermediate center 
throughputs

Thus, a transportation problem with a system of produc-
ers, consumers and intermediate centers the throughputs of 
which was not specified has been set and solved.

At the same time, in accordance with the study tasks, 
two alternative approaches were proposed for constructing 
a procedure for calculating throughputs of intermediate 
centers. The first approach uses the iterative Nelder-Mead 
method. A set of ordinary two-index transportation prob-
lems is solved in each step of this method. The second 
approach is based on a preliminary finding of the shortest 
routes for each supplier-consumer pair. Realization of this 
idea allowed authors to reduce this problem to a common 
two-index problem.

Comparison of effectiveness of the proposed methods for 
calculating rational values of throughput of the intermediate 
centers convincingly demonstrates advantages of the second 
approach. It is easier to implement and it has significantly 
faster performance. However, its most important advantage 
is the possibility of extending this approach to the case 
where the system of intermediate centers contains not one 
but several intermediate layers. The obtained results can be 
directly used in the practice of large enterprises implement-
ing a closed cycle of the production process (production of 
products – delivery of products to points of sale – consump-
tion of products).

The expedient direction of further studies consists in 
taking into account real uncertainty in estimating transpor-
tation costs. This problem was first formulated in [18] and 
almost simultaneously in [19] for a simple case when the ran-
dom cost values are distributed according to the normal law. 
More adequate possibilities for specifying uncertainty are 
associated with the use of fuzzy mathematics [20, 21] as well 
as imprecise mathematics [22, 23]. Finally, another variant 
of uncertainty arises if the random costs of transportation 
are specified by the values of their mathematical expecta-
tions and variances. The way to overcome the problem in this 
case is to find the worst density of the cost distribution [24] 
and a minimax solution of the problem.

6. Conclusions

1. An iterative procedure was proposed for calculating 
rational values of throughput of intermediate centers. The 
method provides an accurate solution of the problem which 
minimizes total costs. A feature of this procedure is applica-
tion of the decomposition principle which allows the origi-
nal three-index problem to be reduced to a set of ordinary 
two-index problems.

2. A method has been developed for direct calculation 
of distribution of throughput. It is based on a preliminary 
search for the shortest routes for each supplier-consumer 
pair. The method can be used to solve transportation prob-
lems with several layers of intermediate centers.
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