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Ipusedenuii ananiz pose’asxie 3euuainux
oupepenuiiinux pisnans 3 kaacudixauieto pasosux
mpaexmopiii. 3 6UKOPUCMAHHAM MAMPUUL CUHXPO-
Hizayii npoeedenuil ananiz npouecié CunXponizauii
cucmem Pecnepa. Becmanosaenni xomoéinauii ene-
MeHmi6 Mampuuyi, npu AKUX Peanizyemupcs noeHa,
pazoea ma mononoeiuna CuHXpoHI3aAUil cucmem.
Hoxazano, wo 0ns cucmem 3 HeniHilino0 Ounami-
K010 MOJHCce Mamu Micye monooivHa CUHXPOHI3Aa-
uis Haeimv Yy 6UNAOKY GIOCYMHOCMI 36°A3KY MidC
HUMU

Kmouosi cnosa: cucmema Pecaepa, nosna ma
¢azosa cunxponizauis, mampuus cunxponizauii,
MONo0J102iuHa CUHXPOHIZAULA

T ]

Ipuseden ananus pewenuii 00vIKHOBEHHBIX OUPD-
depenyuanvuvix ypasenenuii ¢ xaaccuurxavuei
¢azoevix mpaexmopuii. C ucnoav3osanuem mampu-
Ubl CUHXPOHUIAUUU NPOBEOEH AHAIU3 NPOUECCOB
cunxponuzauuu cucmem Pecaepa. Ycmanosnenot
KOMOUHQUUU d1eMEHMO8 MAMPULbl, NPU KOMOPHLX
peaaudyemcs noamnas, aszoeas u monoJozuve-
ckas cunxponusavuu cucmem. Ioxazano, umo oas
cucmem ¢ HeTUHEUHOU OUHAMUKOU MOJCem UMemb
MeCmo Mmononoeuneckas CUHXpOHU3IAUUSL oadce 6
cayuae omcymcmeus C8A3U Mexicoy HuMu

Kmoueevie cnosa: cucmema Peccaepa, noanas
u pazosasn cuNXpoHU3AUUSL, MAMPUUA CUHXPOHUIA-
UUU, MONOJI02UMECKASL CUHXPOHUSAUUSL
| o

1. Introduction

Due to the prospects of using systems with nonlinear
dynamics in information and communication networks,
the study of synchronous work of systems with nonlinear
dynamics is important and promising in various fields of
modern science [1], despite the fact that the methods of
solving differential equations with nonlinear functions are
already known. It should be noted that the known methods
for solving differential equations by linearization technique
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do not exclude the possibility of having incorrect solutions
in the process of system buckling analysis. Lyapunov and
Sylvester stability criterion is one of the best known criteria.

In addition, the use of linearization techniques provides
the study of only complete synchronization of the two sys-
tems, the essence of which is that over time solutions of the
main and controlled systems are identical. Herewith, the
phase space will have a fixed point.

Phase synchronization will occur in case of solutions
to differential equations that describe the behaviour of the




main and controlled system and form closed trajectories in
the phase space.

The case when the solutions to the systems of differential
equations with nonlinear right-hand side form an attractor
in the phase space is feasible for systems with nonlinear
dynamics. Synchronization is not possible in case of an un-
limited increase of the distance between phase trajectories.

2. Literature review and problem statement

The study of synchronization of systems with nonlinear
dynamics is in the scope of interest of experts in various
scientific and technical fields.

In [1, 2] there is given the study of synchronization of
magnetically coupled electronic circuits, the dynamics of
which is subject to Colpitt’s and Van der Pol’s models. The
authors consider only complete or phase synchronization.
All possible variants of interaction between magnetically
coupled electronic circuits may appear to be important in
the analysis of unauthorized information leakage by means
of interaction through an electromagnetic field.

In [3, 4] the method of checking the controlled system is
considered, and the processes of complete synchronization are
investigated. The authors emphasize the importance of con-
trolling the process of synchronization in the process of design-
ing powerful data processing systems. At the same time, they
were using classical methods of controlling synchronization
that are based on constructing Lyapunov functions. Herewith,
more complicated cases of synchronization, namely the topo-
logical nature of the phenomenon, are not taken into account.

In [5] there is given a generalized approach to description
of coherent motion of the two systems, and com-
parison of phase and complete synchronization is
made. In accordance with the elaborated concept,
there exists a weaker type of coherent motion —
topological synchronization.

In achieving this aim, the following objectives have been
addressed:

— to classify the solutions of ordinary differential equa-
tions that describe the behaviour of systems with nonlinear
dynamics;

—to improve the model of synchronized systems by
means of applying matrix synchronization;

—to study the so-called topological synchronization of
systems with nonlinear dynamics according to the obtained
attractors in the phase space.

4. Modelling synchronized systems with the help of
synchronization matrix

Research of synchronous oscillations in systems with
nonlinear dynamics is a fairly complex mathematical problem.

We shall consider autonomous systems for which in
differential equations there are no terms that are functions
of time:

X1 :F1 (X1’X2""’Xn—1’Xn)’
O

% =Fy (x4, X900 X 1%y,

where (x1, X3, ..., X,) — variables of the system; (Fy, Fo, ..., F;)) —
certain functions from the variables of the system.

Further, we shall consider differential equations with
three variables. We shall analyze the properties of solutions
to the system by the given classification (Fig. 1), which can
be used to study the processes of synchronization of two
dynamic systems with nonlinear dynamics.

The authors of [6] investigated the synchroni-
zation of Réssler and Rikitaki systems only in the
case of complete synchronization by means of the

method of Lyapunov function construction. Other

types of synchronization were not considered.
In [7] there is given an analysis of the so-called
“projective synchronization” on the example of Liu

Solutions to the system
of ordinary differential
equations
i i
Increase Have
without limited
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{ !
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(closed trajectory of unlimited length) that is placed
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system. Herewith, there is introduced a special
scale factor that helps analyze the possible syn-
chronization error, caused by a linear combination

of the phase space of the system

of variables of the main and controlled systems,
the behaviour of which can be nonlinear.
The literature review shows that a significant

1 !
Form Do not form
{ an attractor an attractor
Fixed point Strange
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number of problems in the theory of nonlinear sys-
tems can be solved in the framework of the theory
of linear approximation. Herewith, more compli-
cated types of synchronization, unlike phase and
complete one, can not be considered with the help
of methods of linearization of differential equations.

3. The aim and objectives of the study

The aim of the paper is to study the behaviour of systems
with nonlinear dynamics in the phase space and establish com-
plete, phase and topological synchronization between them.

Fig. 1. Classification of solutions to the systems of ordinary differential

equations

The solutions to systems of linear differential equa-
tions can be found by the roots of the characteristic
equation.

Under such conditions, solutions to the system (1) can
be classified according to the following properties (Fig. 1):

—unlimited exponential growth in time with positive
real part of the exponential index;

— frequency for the case of existence of complex conju-
gated roots of the characteristic equation, the real part of
which equals zero;



— exponential time dependency with negative real part
of the exponential index with an attractor formed as a fixed
point;

— form a cyclic attractor — if solutions are a sum of ex-
ponentially time-dependent solutions and trigonometric
functions.

If the right-hand side of differential equations contains
nonlinear functions, the following two types of solutions
can occur:

— limited non-recurrent solutions that do not form an
attractor;

— limited non-recurrent solutions that form a strange
attractor.

The latter two types of solutions, which, by their nature,
are complex nonlinear oscillations, are the most promising
for practical application.

Let us consider one of the known methods of studying
the synchronization process, the essence of which is to
replace the variables in the right-hand side of the differ-
ential equations that describe the controlled system, with
the corresponding variable values of the main system
[2]. This method will be further called a replacement
method.

The generalized mathematical model for synchronizing
two identical systems with nonlinear dynamics, which is
realized by replacing variables, can be set by a system (2) of
2xn equations, where n is the order of synchronized systems
described by equations (1).

Xo1 = F1(Xovxoz’---’XO(M)’XOn)’

X,, =F, (Xm,xoz,. . .,XO(M),XOH),

X

in

In differential equations (2) variables xj are variables
of the main system, and variables xy; are variables of the
controlled system. Synchronization matrix [|§;]| with nxn
dimension determines the choice of variables, according
to which the main and the controlled systems are synchro-
nized. The elements of the matrix are Kronecker symbols
that can take on a value of “1” — if there occurs replacement
of variables of the controlled system, otherwise — “0” — if
no replacement occurs. The first index of the Kronecker
symbol in the synchronization matrix means the number of
the equation, and the second — the number of the variable
in this equation.

Research of synchronization of the two systems with
nonlinear dynamics is convenient to be carried out in the
phase space, the coordinates of which are presented by the
difference of values of the corresponding random oscillations
of the main and controlled systems:

Xy = F1(Xo1 By + Xy '(1_811)’)(02 8y, Xy, '(1_812)7“'7)‘0“ QRS '(1_81n))r

=F, (Xm 8, + Xy '(1_8n1)rX02 8,y + Xy ‘(1_5n2)v"'rX0n 8, X, ‘(1_6nn))~

where ej=x{;—X;.

Herewith, the study of the synchronization process can
be reduced to the solution of the problem of stability by Lya-
punov by the technique of a linearized system [1]. Lyapunov
stability theory postulates the necessary and sufficient
conditions for the stability of zero solution to the system
of differential equations by real parts of the eigenvalues of
the linearized system. Provided that the real parts of the
eigenvalues are negative, the solution to the system is stable
for small disturbances. This corresponds to the case of the
so-called complete synchronization at which, over time, the
systems will have similar solutions.

To study the systems with nonlinear dynamics, it is
necessary to consider the options of processes of interaction
between the two systems, in which not only complete, but
also more complicated types of synchronization occur.

5. The study of synchronization in two Réssler systems
with similar parameters

Establishing of synchronous oscillations and their sta-
bility were studied on the example of Réssler system, which
is one of the simplest systems capable of generating complex
oscillations and, under certain conditions, forming a strange
attractor. The mentioned system is a third-order system with
one nonlinearity (4):

X=-y—z,
y=x+a-y, 4)
2:b+(x—r)-z.

?) Nonlinear oscillations occurred when
the values of the parameters of the sys-
tem (4) were a=b=0.2 and r=>5.7. Here-
with, solutions to the system (4) form
a band attractor of the Réssler system

(Fig. 2).

Fig. 2. Band attractor of the Rossler system

e, =F (Xm 8y + Xy '(1_811)’){02 By +Xyy '(1_812)r'~'vX0n 8y, + Xy, '(1_8111))_1:1(Xowxozv'-vXo(n_g’Xon)’

e1n

3

:Fn (X01 '8n1 +X11 '(1_8n1)’X02 '8n2 +X12 '(1_8n2)""’x0n 'Snn +X1n '(1_8nn))_Fn (X01’X02"'"XO(n—l)’XOn)y



The research was conducted in the following sets of solu-
tions to the system of equations

xe[-9.1;11.43]; ye[-10.8;7.8]; z€[0.01;22.8].

Time diagrams of variables x and z of the Rossler systems
are shown in Fig. 3.
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Fig. 3. Time diagrams: a — variables x of the Rissler system;
b — variables z of the Rossler system

Generalized differential equations that describe the cou-
pled main and controlled systems with nonlinear dynamics
can be written as follows:

EXO ==Yo~Zp

Vo=%X,+0.2-y,,

2,=0.2+(x,-5.7) 2,

X, :_612'YO_(1_812)'Y1 _813'20_(1_813)'Z1r

v, :821-X0+(1—821)-X1 +0.2-522-y0+0.2-(1—822)-y1y

where (xq, yo, z9) and (xy, yi, ) — values of chaotic oscil-
lations generated by the main and controlled systems, &; —
Kronecker symbols

The order of the synchronization matrix of the system

(5) will be as follows:

8, O
||8ij|| =By 8, T (6)
8y * 0 Oy

where insignificant elements of the matrix are marked
with *.

Let us consider the variables that are equal to the
difference of values of oscillations, generated by the main
and controlled systems. Then the system (5) will be as
follows:

e, :—(1—812)~ey—(1—813)~e
e, =(1-8,)-e,+0.2:(1-8,)-¢,,

e, =(831~X0+(1—531)~x1)~(833~zo+(1—833)~z1)—
57-(1-8y,) €, —x, 7.

70

(N

In the linear approximation, the phase space that corre-
sponds to the above-listed variables will be called the dif-
ference space. Neglecting the term (1-813)-(1-831)-exe,, we
will obtain a linearized system (8), which has the following
matrix form (9):

% =0.2+(8,, % +(1-84,) %, ) (8552 + (184 )2,) =578 -2, —5.7- (18, ) z,,

—éx:—(1—812)~ey—(1—613)~ez,

e, =(1-8,)-e,+0.2:(1-8,,)-e,, ®)
&, =(1-85)-7,-e +(1-85)(x,-5.7) e,

e 0 ~(1-8,,) -(1-8,,) e,

e =] (1-8,) 0.2:(1-8,,) 0 x|, [ (9)
el (1-84)-2 0 (1-85)-(xg=5.7) |e,

Let us consider the process of synchronization of the main
and controlled oscillators in the case of replacing all vari-
ables of the controlled oscillator 8;9=813=891=829=831=833=1.

In this case, the system (9) has a sustainable over time
trivial solution:

ex=Cy; ey:Cy; e,~C, (10)
that depends only on the difference of the initial conditions
of the main and controlled systems y.

C=x1(0)—x0(0); Cy=y1(0)—=y0(0); C,=21(0)~2z0(0). (11)

Dependencies between variables of
the main and controlled systems for
this case of synchronization are shown
in Fig. 4.

When the values of the matrix
elements are 51220; 513:821:822:531:

6)) =333=1, the solutions to the system (9)
will be as follows:

ex=Cy— Cyt; 6,=Cy;¢,=C,. (13)

From the above-stated solution, it follows that syn-
chronization will be stable only if Cy=0. When C,#0 the
difference of oscillations x and x; of the main and controlled
systems will have a linear growth in time.
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Fig. 4. Phase trajectories of the main (solid curve) and
controlled (dotted curve) systems at replacement of all
variables of the controlled system

The trajectories of systems in the phase space of variables
are shown in Fig. 5.

Table 1 shows the solutions to the system of equations (9)
at such values of the synchronization matrix elements, which
provide the unlimited growth of the difference of coordi-
nates in time.



Fig. 5. The trajectories of the main (solid curve) and
controlled (dotted curve) systems in the phase space of
values of generated random oscillations

Table 1

Solutions to the system (9) at the values of the matrix
coefficients with no synchronization

Values of coefficients
812=0; 813=821=022=031=833=1
813=0; 819=821=029=031=833=1
812=813=0; 821=029=031=833=1
820=0; 819=813=021=031=833=1
821=0; 819=813=029=031=033=1

Solutions to the system
e,=Cy—Cyt; e,=Cy; ,=C,
e,=Cy—C,t; ,=Cy; ¢,=C,

ey=Cx—(Cy+C))t; e,=Cy; e,=C,
e,=Cy; e,=Cy-exp(0.2-t); e,=C,
ex=Cy; e,=Cy+Cy-t; e,=C,
ex=Cy
e,=(5-Ct+Cy)-exp(0.2t)-5-Cy; €,=C,

891=029=0; 819=013=031=0933=1

ex(t)=A-exp(0.1-t)sin(v99 t+a);

812=0891=027=0; 813=031=033=1
e\,(t):A-exp(O‘1-t)~sin(x/® t+a)

Fig. 7 shows the phase trajectories, obtained for the val-
ues of the synchronization matrix elements given in the last
line of Table 1.
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Fig. 6. The projection of phase trajectories onto a plane e,e,
in the difference space at the values of the parameters of
the synchronization matrix 61,=821=0,,=0, 813=031=033=1

When parameter values are §15=0821=0, 813=833=095=1
and 8y3=0 (Table 2), in the difference space we will have
closed phase trajectories that correspond to phase synchro-
nization of the main and controlled systems. The systems
will have synchronous oscillations. Phase synchronization is
set between them.

Table 2

The solutions to the system of differential equations at the
values of the synchronization matrix coefficients at which
phase synchronization is observed

Values of

coofficients Solutions to the system

812=091=0, 813=1, €=
89p=031=031=1 L x/ |

€ = (Cx)2+(Cy)2-sin t+arctg((C2y) ;

X

812=021=0, 813=0, . ‘
899=031=031=1

e, = (Cx)2+(cy) -COS t+arctg(%] ;

X

Attractors of the main and controlled system and the
projection of phase trajectories onto the plane xy for this
case are shown in Fig. 7.

Fig. 7. Phase synchronization of the main and controlled
systems in the space of phase variables at the values of
the synchronization matrix elements given in Table 2:
a — attractors of the main (dotted line) and controlled
system (solid line) in the space of phase variables;

b — phase trajectory projection onto a plane ee, in
the difference space



More complicated types of synchronization occur if the
coefficients in the third equation of the system are equal
to zero. In this case, there will be a complex dependency of
coefficients of differential equations on the time, determined
by time dependencies of variables x¢ and zo. Analytical solu-
tions to the system of differential equations as a function of
time are impossible.

It is obvious that the presence of coefficients with com-
plex time dependency is caused by nonlinearity of the pri-
mary system. The greater the number of nonlinear terms and
equations, the more complicated attractors of the systems in
the difference space are.

Table 3 shows solutions to the system of differential
equations that describe the interaction between the main
and controlled systems when exposed to the process of syn-
chronization of nonlinear terms in the right—hand side of the
differential equations.

Table 3

Influence of nonlinearities on the process of synchronization
of the main and controlled systems

Synchronization matrix coef-

ficient values Solutions to the system

ex=Cy; e,=Cy; e,(t)=Cy
t

831=0; 819=013=091=022=0833=1 JZU (é) d& +C
) :
ex=CX; ey=Cy; ez(t)=cz'
833=0; 812=815=821=822=031=1 [t
675'7{ .t
e,=Cy; ey=Cy; e,()=Cy
J"o(i)dg

831=033=0; 812=813=021=0822=1 jz (&)d&&c et o
0 z
0

We shall analyze the influence of the first term zy-e; on the
process of synchronization when the values of the synchro-
nization matrix elements are 831=0; §19=813=821=822=833=1.
For these values of the elements, the variable e, in the differ-
ence space is determined by the timing diagram of the coor-
dinate z, which has an impulse nature and is always positive
(Fig. 3, b). Thus, the growth intervals of the variable e, in
time will alternate with the intervals, where its values will
remain constant (Fig. 8).

It is obvious that the influence of the second term x¢-e,
\tfvill be determined by the time dependency of the integral

Jxo(t)dt values (Fig. 9). From the time dependency of x

EFig. 3, a) it follows that the value of this integral is a priori
less than 5.7. This indicates the stability of solutions to the
system by Lyapunov, as evidenced by the diagram of the time
dependency e, (Fig. 10).

Thus, when the values of the parameters are §;3=0;
819=891=0829=0831=833=1, there occurs complete synchroniza-
tion, since variables ey, ey in the difference space (e, ey) are
constant, and the third variable e, asymptotically tends to zero.

Let us consider the conditions under which the systems
with nonlinear dynamics realize a strange attractor. Here-
with, there occurs phase synchronization (815=891=0) on the
variables x and y and consistent disturbance cycle (833=0).
The values of parameters 895 and 833 are equal to one, since
otherwise, the trajectories will indefinitely grow in time.
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Fig. 8. Time dependency e, at the values of
the synchronization matrix elements 631=0;
812=013=021=022=033=1

=
<

Value of the integral
=S IS

-12

0 40 8 120 160 200
Time, number of indications

t
Fig. 9. Time dependency of the integral [x,(&)dg value
0

2

;3 AR JU oS N (R
e |
T :_ ________
e R A N S S o]
S S (I
-10 :
0 20 40 60 80 100

Time, number of indications

Fig. 10. Time dependency e, at the values of
the synchronization matrix elements 13=0;
812=021=082,=0631=033=1

Phase trajectories at the values of the synchronization
matrix coefficients (the first and second lines in Table 4) are
shown in Fig. 11, 12, respectively.

Such type of synchronization is called topological syn-
chronization [8].

It should be noted that in the absence of communica-
tion between the systems (819=813=021=0822=031=833=0), a
strange attractor will also occur (Fig. 13).



Table 4

Conditions of realization of a strange attractor
(limited non-recurrent trajectories) in the difference space

Values of Solutions to the system
coefficients
C,
e, = (CX)2 +(Cy)2 .sin[t+arctg[ci)};
812=091=
=031=0; P 2 C,
B15=Bgy— e, = (Cx) +(Cy) -cos[t+arctg(CJ:|;
=333=1 !
el
e,(t)=C, e et
Fig. 13. Strange attractor in the difference space of
C Réssler uncoupled systems
e = (CX)2 +(CV)2 'sin[t+arctg[’ﬂ;
; ! C.
S19=801= This means that the Réssler systems with different initial
=813=031=0; | e, =,/(C )2 +(C ‘)2 -cos[t+arctg(CyJ]C +C: conditions can be synchronized even in the absence of com-
829=833=1 ’ ’ C, S munication between them.
(i)=C, e fofehic
e, (t)=C,- e ¢
’ ’ 6. Discussing the results of research of
synchronization processes in
Rossler systems
10
Based on the analysis of the behaviour of systems with
0 nonlinear dynamics, there was made a classification of

solutions of ordinary differential equations and there were
J improved models of synchronization processes of the sys-

-10 9 tems under analysis by means of matrix synchronization.
u With the help of the obtained models, the trajectories in the

phase space of the above-mentioned equation systems were
analyzed and classified.

The processes of synchronization of oscillations in the
main and controlled nonlinear systems were studied by

—— means of replacement and transition to a linearized system

-1 71 of variabl I to the diff f ph iables of th

45 a1 o 005 of variables equal to the difference of phase variables of the
e N main and controlled systems.

As a result of the analysis, there were determined the
values of the synchronization matrix elements in which there
are different types of synchronization: complete, phase and
topological. It was discovered that topological synchroniza-
tion occurs even in the absence of communication between
Rossler systems in the difference space of phase variables of
the main and controlled systems with nonlinear dynamics.
Herewith, in the phase space, there is formed an attractor
with low spatial complexity that is an uncoupled trajectory
with limited values. The criterion for the absence of synchro-
nization of nonlinear systems is the unlimited growth of the
phase variables difference.

The disadvantage of the proposed research method is
the lack of quantitative analysis of complex synchroni-
zation methods and the conditions under which they are
possible.

The obtained results can be used in modelling nonlinear
electronic circuits, coding and cryptographic protection of
information flows in telecommunication systems.

The work is a continuation of thematic studies of nonlin-
ear processes [9—11], done at the Department of Radio Engi-

Fig. 11. Strange attractor of the coupled systems with
nonlinear dynamics at the values of the synchronization
matrix elements 81,=5,1=031=0, §13=082,=033=1

Fig. 12. Strange attractor of the coupled systems with neering and Information Security under the theme adopted
nonlinear dynamics at the values of the synchronization by the MES of Ukraine in the line of further improvement of
matrix elements §1,=8,1=813=831=0, 87,=533=1 the proposed method.



7. Conclusions

1. By means of synchronization matrix, it was discovered
that in the difference space of Rossler systems, there are
observed trajectories corresponding to complete, phase and
topological synchronization. Even a relatively simple system
with one nonlinearity has almost all possible solutions of
ordinary differential equations in accordance with the exact
classification (except those that do not form an attractor
because of being constrained).

2. Taking for the basis the synchronization matrix, there
were analysed, by means of replacement, the synchronization
processes of Rossler systems. The analysis can serve as a pro-
totype for the development and implementation of software
algorithms in the study of differential equations with nonlin-
ear functions. It was discovered that nonlinear links in the

right-hand side can cause a variety of solutions to equations
and the absence of a unique algorithm for classification and
search for solutions in a given system.

3.1t is shown that in the difference space of phase
variables in Rossler uncoupled systems, there exists an
attractor with low spatial complexity that enables the
establishment of coherent oscillations even in the absence
of communication between the systems with nonlinear
dynamics. In particular, this means that analysis of syn-
chronization processes will require other methods that are
not related to the analysis of the spectrum of Lyapunov
exponents and construction of Lyapunov functions. This is
especially true when chaos is used to protect information
in television and information and communication systems,
as hereat, little coherence could allow unauthorized access
to information.
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