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Pozensnymo 3adauy peepeciiinozo amanizy 3
Heuimko 3adanumu 3minnumu. Chopmynvosano ma
00Tpynmosano Kpumepii axocmi ouinku pezpeciii-
Hux KoegpiyicHmie, w0 6pPAxX068Y€ CYMmeei 610MIHHO-
cmi Yy mouHocmi 3a60aHHs 3MIHHUX. 3anpPonoHo8aHo
Memo0 po3e’azanns 3adaui. Pozznsnymo i eupiwe-
HO 3a0auy Hewimkoi Komnapamopuoi idenmudixa-
uii, KONU 3HAUEHHSA 3IMIHHOL, AKA NOSACHIOEMBCS, He
BuU3HAUENO, alle MOJCYNb OYymu pandico8ani 3a 3men-
wennam 6yov-ar020 06panozo noxasnuxa

Kntouosi canosa: newimruili peepecivinuil auna-
i3, HeuimKi 6uUXiOHI 0aHi, HewimKka KomMnapamopHa
idenmuixayis

[, u|

Paccmompena 3adaua pezpeccuonnozo aua-
au3a € HeuémKo 3a0aHHLIMU NepPeMeHHbLMU.
Copmyaupoean u obocrosan kpumepuii Kkavecmea
OUEHKU pezpecCUOHHBIX KO0IPPuuuenmos, yuumor-
sarowull cywecmeenHvle PA3IUMUS 8 MOUHOCMU
3adanus nepemennovix. Ilpednoscen memoo pewenus
3adavu. Paccmompena u pewena 3adaua Heuémxoi
KomnapamopHnou udenmudurxayuu, xozda 3naue-
HUA 00BACHACMOU NepeMennoll He onpedenenvl, HO
Mozym Goimos pandcuposamnvt no Yyovleanur0 Kaxo-
20-U60 6vIOpan020 noxazamens

Kniouesvie cnosa: mneuémxuii pezpeccuonuwlll
ananus, HeuémKue UCXO00Hble OAHHble, Heuémras
Komnapamophnas udenmuuxayus

u] =,

1. Introduction

Regression analysis is a powerful and effective statistical
method of constructing mathematical models that describe
the relationship between the indicator of the functioning
of the analyzed system y and the conditioning, explanatory
independent variables (factors) F,F,,...,F,.

In order to reveal this connection, a series of experiments
is conducted in which each experiment (Fﬂ,FjZ,...,ij) de-
termines its corresponding result, i.e., the value of the depen-
dent variable Y where j=1,2,...,n. The sought connection
is usually described by the Kolmogorov-Gabor polynomial,
which in the simplest case has the form

Y =%+ Fx +F,x,+..+F,x, +¢,.

Here F; is the value of the i-th independent variable in
the j-th experiment; i=0,1,2,...,m, and j=1,2,.,n.

In the matrix, the above relation has the form FX=Y,
where

‘XO
1 F, F, E,, ¥ Y
1 F, F F,, ! y
F= 21 22 2 X = X, |, Y = 2 )
L F, E, .. F, Y,

In the canonical regression analysis, the following basic
assumptions are made.
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F are mea-

i

1. The values of the independent variables
sured without errors, and i=1,2,....,m.

2. The dependent variable y in each experiment is esti-
mated with a random error € i which is normally distributed
with a zero mathematical expectation and a known variance 62.

3. The random errors ¢€; in different experiments are not
correlated.

In these proposals, estimates of the unknown coefficients
X, %%, Of the regression polynomial are obtained by
the least square method (LSM), minimizing the sum of the
squared deviations of the values of the resulting variable y;
from the corresponding values

m
hIEA

i=0

predicted by the model.

The solution of many practical problems becomes more
complicated when the initial assumptions of the classical re-
gression analysis are not true. Of particular interest are the
problems in which the initial data are not clearly estimated.

2. Literature review and problem statement

Apparently, one of the first works in which the problem
of regression analysis was formulated and solved, taking
into account the vagueness of the initial data, was [1]. In
this paper, a linear model of fuzzy regression with a clear




set of values of variables and indistinctly defined regression
coefficients with triangular symmetric membership func-
tions is introduced. The task of finding the set of regression
coefficients is reduced to the problem of linear programming.
Further, works [1-9] develop the approach proposed in the
original article [1]. The general scheme for solving the prob-
lem in the terms that are introduced in [2] has the following
form. The linear model that connects the explanatory vari-
ables F= {E,Fz,,Fk} and the explained y has the form

yz@+ﬁﬁ+@@+m+@ﬁ,
where {F}, i=12,..,k is aset of explanatory variables; y is

the variable to be explained; {bl.}, i=0,1,..,k isaset of fuzzy
numbers with membership functions:

i i
. , m;—c; <b,<m,,
M(b,)= L
(mi+ci)_bi, m; < ~,. <m; +c;,
c

10, b,>m;+c,.

There are n experiments resulting in the sets F= {Fji},
(_7/17y27--~,.7/n)'

The task is to find the parameters (mc,), i=0,1...k
that minimize the objective function

L:nco+zk:ici|Fﬁ|

i=0 j=1
as well as satisfy the constraints

my — ¢y +(m, —c1)Fj1 +.t(m, —ck)ij > mjinyj
and

(my+cy)+(m,+c,)Fy+...+(m,—c, ) Fy <maxy,

j=12,.,n

The usual linear programming problem is obtained.

Further, studies [3, 4] introduce asymmetric functions of
the fuzzy numbers b, i=1,2,...,n, and studies [5-7] introduce
trapezoidal membership functions. Then, in [8, 9], a polyno-
mial regression model is introduced, with the group-based
method of arguments being used to estimate the coefficients.

Starting with [10], another approach to estimating re-
gression coefficients, based on the use of the method of least
squares, has been developed. Another improvement in the re-
gression model is the assumption that all observed variables
are fuzzy numbers [11-19]. In this case, different hypotheses
are used about the form of the membership functions of fuzzy
regression coefficients (triangular, trapezoidal, and Gauss-
ian). However, in all cases the general scheme for solving the
problem is the same.

A predictable membership function for the fuzzy value
of the explained variable is formed, taking into account the
nature of the introduced regression model and the functions
of fuzzy coefficients belonging to it as well as using the
Zade generalization principle and the rules for performing
operations on fuzzy numbers. On the other hand, this same

membership function is determined from the experimental
data. These two membership functions are compared with
each other, and the resulting “distance” between them is
used in the least-squares procedure to find the parameters
that determine the membership functions of the regression
coefficients. For example, in [16], this procedure is realized
as follows. A model membership function is introduced for
the fuzzy value of the explained variable y, which has a
Gaussian character

w(y)= exp{— (yz_cf)z }

The coefficients b and ¢ are described by the regression
models:

b= bF, and c= cF.
i=1 i=1
The “distance” between the model membership function
t,(y) and the real membership function ., (y) is calculated
by the formula

[[ia ()1, ()]

R=pf¥— v — 7-y dy,

where [ y,y | is the range of the observed values of y.

Finally, in [20—22], the determination of the parameters
of the fuzzy coefficients of the regression model is performed
in the Chebyshev metric.

It should be noted that, despite a very large number of
works on the problem of regression analysis (in particular,
[22] contains a detailed and qualified review of the most sig-
nificant and interesting results obtained during the period
of 1982-2017), some important questions remain insuffi-
ciently researched. For example, the often used criterion for
assessing the quality of a solution to the regression analysis
problem cannot be considered convincingly justified. This
criterion minimizes the differences between the model func-
tion of the fuzzy predicted value belonging to the explained
variable and the membership function of this variable that
is obtained after processing the experimental data. The fact
is that the accuracy of estimating the values of independent
and dependent variables can differ substantially, and it is
for the worse with respect to the dependent variable. In this
connection, the result of solving the problem does not neces-
sarily provide a minimum of the mean total fuzziness of the
predicted value of the explained variable. Apparently, a pref-
erable solution would be the one that satisfies the following
two natural requirements:

— proximity to the modal value of the fuzzy explained
variable that is obtained during the processing of the exper-
imental data;

— maximum compactness of the attribution function of
the predicted value of the explained variable, taking into
account the regression relationship.

A completely different type is the problem of estimating
the coefficients of the regression model in the absence of data
on the values of the dependent variable. Direct use of tradi-
tional regression analysis technologies is impossible if in the
experiments all available information is limited only by data
on the values of the independent variables (F;). A similar



situation arises when comparing a set of similar objects by
data on a set of their characteristics. Of course, this infor-
mation is not sufficient for constructing the regression model

R(x)=xy+x,F+x,F,+..+x,F,, 1)
where F=(F,F,..,F,) is aset of factors that are the char-
acteristics of the object; X =(x,, x,,...,x,,) is a set of weight
coefficients.

However, the use of data on the characteristics of objects
allows, for example, expert way, ranking the compared ob-
jects in a descending order of the value of their any resulting

characteristics, for example, “usefulness”. In this case, we
obtain
R(X)>R,(X)>..>R, (X)>R,(X). 2)

This relation is used in the standard problem of compar-
ator identification [23] for finding the coefficients of model
(1). Inequalities (2) define the following system of strict
inequalities:

C1(X)= RZ(X)_R1(X)=

=x,(F - B+ x,(Fy - Fy)+..+x, (5, -

Ci(X)=R,(X)-R, (X)=

:x1(En_E,n71)+"'+xm(an Fm,n71)22x1‘/]1<0
i=1

where v, =F,,~F;, j=12..,n-1, and i=12,.,m

In this case, the value Cj, j=1,2,..,n—1, characterizes
the difference of the “usefulness” of the (j+1)-th and j-th
objects.

The system of inequalities (3) with the addition of the
positive variables Xy J=12,m—1 s transformed into

the system of equations

levﬂm =0, j=1,2,.,n—1. 4)

Thus, the problem is reduced to the search for a solution
of a homogeneous system of linear algebraic equations (4).
This system always has the trivial solution:

X=Xy ==X, =X, ==X, =0,

This solution is unique if the rank of the basic matrix of
the system is equal to the number of variables. Otherwise,
there are an infinite number of solutions. The peculiarity
of the problem lies in the fact that specific requirements are
imposed on the desired solution, i. e., the non-negativity of
the variables x,,x,,..,x, and the positivity of the variables
X, J=12,mn-1. The number of additional variables can
be reduced to one if the Chebyshev point is used as the solu-
tion of the system [24].

Now, taking into account the requirements for the signs
of variables, the solution of the problem can be obtained
using linear programming methods: thus, we find a set X
that minimizes x,+1 and satisfies the system of linear
equations:

E,)= zxiVu‘ <0,
i1

leVﬂ +x,,

j=12,n—1. (5)
In this case, in order to exclude the trivial solution
X =Xy=..=X

system (5) requires adding one more equation:

S =1, ©)

i=1

which is the normalization condition for the coefficients
of the regression equation. The resulting solution is used
to calculate the “usefulness” of the objects according to
formula (1).

A brief review of the known methods for solving prob-
lems of fuzzy regression analysis allows making the follow-
ing conclusions.

1. In the problem with the given indistinct-
ly explanatory and explained variables, there
is no theoretically grounded criterion for as-
sessing the quality of the results of regression
analysis that would take into account possible
significant differences in the accuracy of mea-
surements of the explanatory and explained
variables. This effect arises and manifests itself
particularly negatively when, under conditions
of a small sample of observations, no hypoth-
eses regarding the laws of error distribution
in measuring the variables can be reasonably
accepted or rejected. This circumstance re-
quires using fuzzy descriptions of the observed
variables when solving practical problems of
regression analysis the accuracy of which can
be significantly different.

2.In the problem of comparator identification, the
question of estimating the regression coefficients remains
open for the case when the explanatory variables are not
clearly defined.

The fundamental novelty of the problems arising in
connection with this determines the importance of the
research topic.

3. The aim and objectives of the study

The aim of the work is to improve the technology of a
fuzzy regression analysis in the direction of developing a
valid criterion for estimating the quality of regression and
its use in solving practical problems.

In accordance with the stated goal, the main objectives
are formulated as follows:

—to develop a reasonable criterion for assessing the
quality of solving the problem of regression analysis under
conditions where the explanatory and explained variables
are not clearly defined;

—to devise a method for solving the problem of fuzzy
regression analysis based on the selected criterion;

— to develop a method for solving the problem of com-
parator identification under conditions of fuzzy initial data.



4. The method for solving the problem of regression
analysis under conditions of fuzziness of all initial data

Let us introduce the regression relation
xy+xF+..+x,F =y, @)

where the explanatory variables {E}, i=1,2,.,n, and the
explained variable y are fuzzy numbers with known mem-
bership functions.

Let N experiments be carried out, as a result of which
the values of all the variables of the problem are obtained,
(N>n). Substitution of these values leads to the system of
linear algebraic equations:

Xy +a, X tapx,+...+a,x,—a,, =0,
Xy + Ay X, + Xy .+ Ay, X, — Ay, =0,

®)
Xy F Ayydy +AyoXy +. Ay, X, — Ay 0 =0

Here, for convenience, redesignations are made:

Fji =05 Y =45

j=12,.,N and i=12,..,n.

We assume that the parameters of system (8) are Gauss-
ian fuzzy numbers with the membership functions:

(0)
(a,-a?Y

2ot i=b2em j=12.N. 9)
ji

“(aﬁ) =€EXpy—

Now we will say that relations (8) and (9) constitute a
fuzzy system of linear algebraic equations. Let us solve this
system [25, 26].

Let us introduce the set of fuzzy numbers:

n
2= Zaﬁxi =@ G =1,
i=0

(10)

2y ‘Z“NJ i

We now introduce a clear system of linear algebraic
equations, generated by relations (8) and (9), using the mod-
al values a;o) of the fuzzy numbers aj;,

=1.

N n+1? NO

i=12,.,N, j=01,.,n+1:

n
0 0) _ 0 .
3 a-a% =0, (=1, i=12...N.

i=0

an
Let us introduce the following:

A(O):(aﬁ)v X:{xi}’ a,=

i=04..m Al =(a",), j=12..N.

Then the system of equations (11) in the matrix takes
the form:

=0. (12)

The system of equations (12) is redefined and, possi-
bly, incompatible. The natural solution is obtained by the
method of least squares. We introduce the criterion of least
squares:

J=(A9X - A0) (49X - A9)). (13)

Minimizing (13) with respect to X, we obtain X° = {xf’},
i=0,1,..,n, as the solution of the linear equations system
(LES) (11).

Then the clear solution of the fuzzy system of linear alge-
braic equations (8) and (9) will be the set X={x;} j=0,1,..,n,
minimizing the sum of the areas of the figures that are
limited by the membership functions u(z jﬂﬁ of the fuzzy
numbers z,,2,,..,2y, and being the least different from X©®
[26, 27]. The meaning of this criterion is understandable.
Its use provides a set of clear numbers x,,x,,...,x,, for which
the membership functions of the numbers z,,z,,...,z, are the
least blurred and have modal values that are as close to zero
as possible.

Let us write the necessary relations, ensuring the solu-
tion of the system of equations (8) and (9) in the sense
indicated above. In accordance with (9), we define the mem-

bership functions of the fuzzy numbers z,,z,,...,zy, given by
(10). Thus,

ufe )b Sorn-a. -

g

(Zcﬂxt +G]n+1]

(Zj _mj)2
=exp _7262

=expy—

) (0)
x, =}, O —ZGﬂx +a?

i=0 Jj=1

_ (0
m;= 2.4

j=12,...N.

jont1?

Let X”:{x?}, i=0,1,..,n be the LES solution (11),
whose parameters correspond to the modal values of the
membership functions (12). In this case, since m,=m, +m is
the zero vector and the vector components ¢* =c> +G rep—
resent the discrepancies arising when the vector z=x, —x, is
substituted in (8), then the natural measure of the deviation
of the set X from the set X(® is the sum of squares of the
discrepancies, that is,

Jo=(A"X - 40,

n+l

N n 2
zz(zaﬂ xi a]n+1) ’

J=t

J (a0 a)-

where

A = (a@), i=1,2,..N, i=01,...n

ij
and

T
A;(z(z:(agnvag(:z)+1r~"a§\?,)n+1) ) X=(x0 Xy



In addition, we define the functional that determines
the total area of the figures bounded by the membership

of the fuzzy numbers z,,z,,...,zy, as follows:

5i=3 ful e,

=1 Zeo

functions W (Zj)

Then the required clear solution of the system of equa-
tions (8) and (9) is obtained by minimizing the functional

J=J+ )= 2{[? (e d}[zx“”

i=1

Since

;‘:“(zj)dzj = TEXP{—%}CZZ; =

j

- { (Z.—m.)2
=+/2nc. expd——L—2"—tdz. =+/2n0 ,
JJ;x/2ncj P 20" l !
then
J:
1 2
N 92 n
= 2n(20ﬂxl+cw1) +(2a§f)x, aﬁjHJ . (14)
j=1 i=0
Furthermore

Vanojx, +2( " 0 _ (0 )

( 0 (O -
za/‘i Xi = | A =0,

k=0,1,...,n.

The numerical solution of this nonlinear system of equa-
tions gives the required vector X=(x, x, .. x,) of coeffi-
cients of the regression equation.

Finally, let us consider the problem of comparator iden-
tification for the case when the original data are not clearly
described.

We will assume that the value of the i-th characteristic
of the j-th object is a fuzzy number 7, with the membership
function

Wi(ry), i =1,2,...m, j=12,.,n

Since the characteristics of the objects are fuzzy, the re-
sults of calculating the values of the “usefulness” level of the
objects are also fuzzy:

Q,(x)= Zx T

j=12,...n 15)

Let, for definiteness, Ty be fuzzy numbers with a trian-
gular membership function, that is,

’ Ji jl’
r.—a.
ji i
o G Shi<G
Ji Jji
Hy(’y)= bo—r (16)

Since triangular fuzzy numbers are a particular case of
numbers with a membership function of the (L—R) type,
approximate calculations can be made by using the rules for
performing operations accepted for fuzzy numbers of this
type [26]. With this in mind, we define the membership
functions of the fuzzy numbers Q;(X):

0, Q,(X)<A,

Q;(X)-A
C,—A

5,-Q,(X)
B,—C,

0, Q,(X)2B,

L A <Q,(X)<C,,
1w (Q(X)= an

, C,<Q,(X)<B,

and

m m m
A= Zxﬂw C;= Z%Cw B;= zijﬁ'
i=1 i=1 =1

If in the case under consideration, ranking (2) of the ob-
jects by the level of their “usefulness” is preserved, then the
natural analogue (3) will be the fuzzy inequalities

§1(X)=Q2(X)_Q1(X)=

=2,(ry = 1)+ X, (T = Tp)) o+ X, (1 = 110 =
=Y xw, <0, 18)
i=1
Cn1(X) Qm(X) Qr/ (X) th n11
and
W, =T, ~ T J=120n-1 i=12..m 19)

We pose the problem of finding the nonnegative set
X=(X, Xy X,),

ensuring the fulfillment of inequalities (18).

The system of inequalities (18) with the addition of the
positive variable x,,, is transformed into the fuzzy system
of linear algebraic equations

xw,;+x,,, =0, j=12,..,n-1 20
i ji

where w, designates fuzzy numbers, the membership func-
tion of which is determined taking into account (16). Using
the standard description of the membership function of tri-
angular numbers of the L—R type in the form

jl’(xﬂ’ jl



c.—a,, and

i T %

where ¢j; is the mode of the number 7;, o
Bi=b,—c;, as well as the rules for performing operations
for fuzzy numbers of the L—R type, we write the membership
function of the number wj;.

Then

Wy =Ty =15 =<Cpuyy = Ci €= a+by = Chuy
and

bji —CiHCiy Ty, L>R =< mjﬂ&jﬂﬁji L>R~

Here ;; is the mode of the number @, and &, and B i
are the left and right fuzziness coefficients.
Let us introduce the fuzzy numbers

Z].(X):Zx.w. +x
i=1

i ji m+1?

=121

and write down the functions of their membership:
[0, Z(X)<a,

Z(x)—a
2 X0,
i=1

a,~Z,(X)
inﬁji

i=1

»0, Zl.(x)>a3j,

y @ SZ(X)<ay;,

wZ;(X)= 21

,azﬁZj(x)Sasj,

m m
a1jzzxi(mﬁ_aﬁ)+xm+1r aZjZZ‘ximjiermH
il i=1

and
n A
as; = in(mji +Bji)+xm+1'
=

We transform the system of fuzzy equations Z,(X)=0,
j=12,..,n—1, that follows from (16) into an ordinary
system of linear algebraic equations by specifying the fuzzy
numbers @ as being equal to their modal values. In this
case, we obtain

Y xm+x,,=0, j=12.,n-1. (22)
i=1

In order to eliminate the trivial solution
x,=0, i=12,.,m, x,=0, i=12..,m,

of system (22), we add to it another normalizing equation
(6). Let the set

XO = (20,60, O
be a solution of (6) and (22).

We use the definition of “a clear solution of a fuzzy sys-
tem of linear algebraic equations” introduced in [26, 27]. In
accordance with this definition, a clear solution of the system
of equations (6) and (22) will be the set X =(x,,%,,..,%,,,),
minimizing the sum of the areas of the figures bounded
by the membership functions w(Z;) of the fuzzy numbers

Z,,Zy,..,.Z,,, and the least deviating from X®. The meaning
of this definition is clear. Its use provides a set of the clear
numbers (x,,%,,..,%,,;), as close as possible to the modal
X® for which the membership functions of the fuzzy num-
bers Z,,Z,,...,Z,,, are the least blurred. As a criterion for the
compactness of the fuzzy-number membership functions Z,
j=1,2,..,n—1, the squares of the length of the intervals can
be used as the carriers of the corresponding fuzzy numbers.
Then the measure of the quality of solving the system of (6)
and (22) will have the form:

(ixi (Blj +aij)) +i(xi _xz(O))Q'

i=1

(23)

1<%

7

Minimization (23) together with the normalization of
condition (6) yields the desired set X =(x,,....,x,,,,).

1 m+H

5. Discussion of the findings

Thus, the study suggests methods for solving regression
analysis problems under conditions of uncertainty in the
values of explanatory and explained variables. For the case
when all these variables are given by fuzzy numbers, a crite-
rion for the quality of solving the problem is introduced and
justified. The use of this criterion makes it possible to calcu-
late the values of the regression experiments. The resulting
set provides a compactness of the membership function of
the fuzzy value predicted by the regression model of the
explained variable and the proximity to the modal value.
The required set is determined as a result of solving the
fuzzy mathematical programming problem by the method
proposed in [28]. The same technology was used to solve the
problem of fuzzy comparator identification.

The possible continuation of this research is related to
the difficulties of solving regression analysis problems with
deeper uncertainties in the initial data. Let, for example, the
values of variables be given in terms of fuzzy mathematics
[29]. A possible approach to solving the problem in this case
is the formation of fuzzy models of inaccurate descriptions
of the variables [30]. Another variant of an inaccurately
defined problem of regression analysis arises when, under
conditions of a small sample of initial data, it is not possible
to describe their uncertainty in terms of the probability
theory or fuzzy mathematics. In this case, the natural way
to solve the problem is to find the minimax solution under
the assumption of the worst distribution densities (or mem-
bership functions), using the methods of continual linear
programming [31].

6. Conclusions

1. A criterion for estimating the quality of solving the
problem of fuzzy regression analysis is proposed and jus-
tified, taking into account possible significant differences
in the accuracy of estimating explanatory and explained
variables.

2. A method for solving the problem of fuzzy regression
analysis is developed based on the selected criterion, using a
fuzzy optimization technology.

3. A method for solving the problem of fuzzy comparator
identification is developed when the results of measuring the
explained variable are absent.
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1. Introduction

2. Literature review and problem statement

Cauchy’s problem is one of the main problems in the the-
ory of differential equations, which comes down to finding a
solution (integral) of the differential equation that satisfies
initial conditions (original data).

Over many years, a numerical solution of the Cauchy’s
problem has been the focus of attention by scientists as it
is widely used in different areas of science and technology.
That is why there are a large number of developed meth-
ods for it. In spite of this, however, new methods are being
devised, some of them with better properties than those
preceding.

Cauchy’s problem usually emerges during analysis of the
processes predetermined by the differential law and original
state. Mathematical notation of such equations is an equa-
tion and the initial condition.

The difference between the boundary-value problems
and the Cauchy’s problem is that the region over which the
desired solution should be determined is not specified in the
latter in advance. However, the Cauchy’s problem can be
considered as one of the boundary-value problems.

Numerical methods of the Cauchy’s problem solution are
divided into 3 groups [1]:

— one-point;

—multipoint (methods of prediction and correction);

—methods with automatic choice of integration step.

The one-point methods include methods that have certain
common features, such as:

1. Underlying all one-point methods is the function de-
composition into Taylor’s series, which preserves members
that have % in a power to k inclusive. An integer k is called
the order of the method. Error on a step has an order of £+1.

2. All one-point methods do not require a valid com-
putation of derivatives, because only the function itself is
calculated, however, one may require its values in some
intermediate points. This entails, of course, additional cost
of time and effort.

3. In order to receive information in a new point, it is nec-
essary to have data only from the previous point. This prop-
erty can be called “self-starting”. A capability to “self-start”
makes it possible to easily change the magnitude of step .




