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1. Introduction

2. Literature review and problem statement

Cauchy’s problem is one of the main problems in the the-
ory of differential equations, which comes down to finding a
solution (integral) of the differential equation that satisfies
initial conditions (original data).

Over many years, a numerical solution of the Cauchy’s
problem has been the focus of attention by scientists as it
is widely used in different areas of science and technology.
That is why there are a large number of developed meth-
ods for it. In spite of this, however, new methods are being
devised, some of them with better properties than those
preceding.

Cauchy’s problem usually emerges during analysis of the
processes predetermined by the differential law and original
state. Mathematical notation of such equations is an equa-
tion and the initial condition.

The difference between the boundary-value problems
and the Cauchy’s problem is that the region over which the
desired solution should be determined is not specified in the
latter in advance. However, the Cauchy’s problem can be
considered as one of the boundary-value problems.

Numerical methods of the Cauchy’s problem solution are
divided into 3 groups [1]:

— one-point;

—multipoint (methods of prediction and correction);

—methods with automatic choice of integration step.

The one-point methods include methods that have certain
common features, such as:

1. Underlying all one-point methods is the function de-
composition into Taylor’s series, which preserves members
that have % in a power to k inclusive. An integer k is called
the order of the method. Error on a step has an order of £+1.

2. All one-point methods do not require a valid com-
putation of derivatives, because only the function itself is
calculated, however, one may require its values in some
intermediate points. This entails, of course, additional cost
of time and effort.

3. In order to receive information in a new point, it is nec-
essary to have data only from the previous point. This prop-
erty can be called “self-starting”. A capability to “self-start”
makes it possible to easily change the magnitude of step .




4. Compared with the one-point methods, the methods
of prediction and correction possess a number of special
features [2].

1) To implement the methods of prediction and correc-
tion, it is necessary to have information about several of the
previous points (they do not belong to the “self-starting”
methods), which is why, in order to obtain additional infor-
mation, it is necessary to apply the one-point method. If in
the process of solving differential equations by the method of
prediction and correction the step changes, then one has typ-
ically to switch over temporarily to the one-point method.

2) One-point methods and methods of prediction and
correction provide approximately the same accuracy of the
results. However, the latter, in contrast to the former, make
it possible to estimate only an error in a step. For this reason,
when employing the one-point methods, the magnitude of
step A is typically chosen slightly smaller than it is required,
which is why the methods of prediction and correction prove
to be the most effective.

3) When applying the Runge-Kutta method [2] of the
fourth-order accuracy, at each step one has to calculate four
values of the functions, but for the convergence of the meth-
od of prediction and correction of the same order of accuracy,
it is often sufficient to have two values of the function. That
is why methods of prediction and correction require almost
twice less computing time than the Runge-Kutta methods of
comparable accuracy.

To solve differential equation y’= f(x,y) by a numerical
method means to find for the assigned sequence of argu-
ments x,,x,,...,x, and y, such values of y,,y,,...,y, so that
yizF(xi) (i=1,2,...,n) and F(xo)zyo. Thus, the numeri-
cal methods make it possible, instead of deriving function
y=F(x), to receive a table of the values of the given func-
tion for the assigned sequence of arguments. The magnitude
h=x,-x, , is called a step of integration.

Graphically, numerical solution [3] is a sequence of
short straight-line segments, by which analytical solution
y=F(x) of the equation is approximated (a pieccewise-linear
approximation).

There are methods of differential transformation (MDT)
of solution to the Cauchy’s problem. Basic definitions and
fundamental theorems of a one-dimensional MDT and its
suitability for different types of differential and integral-
differential equations are given in [4].

A reliable, yet very simple, numerical method to solve
different cases of a singular Cauchy-type integral equation
is developed in [5]. For this purpose, first Bernstein polyno-
mials are derived, which are used to approximate a solution
of the given singular integral equation. This, however, leads
to solving the system of linear algebraic equations (SLAE),
which sometimes is difficult to resolve.

Article [6] examines numerical solution of the class of
systems of singular integral Cauchy’s equations with con-
stant coefficients. The proposed procedure consists of two
main stages: the first is to consider a modified problem,
equivalent to the original under appropriate conditions, the
second is to bring its solution using a vector of polynomial
functions. But the solution comes down to solving the linear
systems.

By applying the Haar functions [7], it is possible to
receive a solution with a very small error, more accurate in
some cases than the solution derived by the second order
Runge-Kutta method. But the function must be superim-
posed with certain conditions.

3. The aim and objectives of the study

The goal of present work is to construct a numerical
method to solve the Cauchy’s problem for ordinary first or-
der differential equations, which would yield more accurate
results than the classical methods. The new method should
not require solving a system of linear algebraic equations
and should not require superimposing of conditions on the
function.

To accomplish the goal, the following tasks have been set:

— to develop a new interpolation numerical method, em-
ploying the apparatus of non-classical Newton’s minorants in
order to solve the Cauchy’s problem for ordinary first order
differential equations;

—to prove the computational stability and convergence
of the method;

—to assess accuracy of the solution and error of the
method.

4. Materials and methods for examining a solution to the
Cauchy’s problem

4. 1. Formulae of the minorant type for the approxi-
mated calculation of definite integrals

There are a number of approaches in order to construct
formulae for the approximated calculation of definite inte-
grals: replacing an integrand function with interpolation
polynomial [8], the use of Bernoulli numbers and polynomi-
als [9]. In practice, however, most often used are quadrature
formulae of the interpolation type. A question then arose:
is it at all possible to employ the apparatus of non-classical
minorants of Newton’s functions, assigned in a tabular form,
to solve the Cauchy’s problem as well? In this case, the
new method would not have to solve SLAE since this is a
cumbersome process. In [10], the apparatus of non-classical
minorants of Newton’s functions, assigned in a tabular form,
was used for finding zeros of the function.

Assume that it is required to compute a definite integral

b

szf(x)dx. (1)

a

Without loss of generality, we shall consider that
/(x)>0 forall xe[a,b]. Let us build for function y= f(x)
a Newton’s minorant [11] by two points x,=a, x,=b. We
obtain

(Ah T B a)},a7 (2)
where A= f(a), B= f(b). We shall replace at interval [a,b]

function f(x) w1th Newton’s minorant m,(x) [12]. We
receive

b
J= Jf dx = Im/ (x)dx+R(f), (3)
where R(f) is the remainder. Calculate
b b 1
S= Imf (x)dx= I(Ab"”Bx‘“ )b‘“ dx. 4)
At A#B (if A=B, then S=A(b—a)=B(b-a)) we
obtain:



where x,=a, x,=b, and at every interval
[x,x,,] i=01,..,n-1,

we shall substitute function f(x) with Newton’s minorant
m,(x). We receive

)
. b a n1b n-tb
(A b-a E(E)ﬁ_(ﬁ)m _ :j x)dx = zjf )dx =Y [m,(x)dx+R,(f). (10)
B*) In(B)-In(A)| AlA A a 0 0
n a Since at f(x;)# f(x,,
_(Ah  b-a {E)EB—A (b-a)— B4 ) ()% )
B ln(B)—ln(A)kA A }ln(B)—ln(A) Jm/(x)dxz(xm—xi)f(xmf)(_f()xi), (11)
x; ) xi+1
Thus, ln[ f(x)
b
/(b)-/(a) th
f(x)dx=(b-a)—————"=+R(f). 6) en
1+1
The resulting formula is called a small formula of the :[ hz f(xm) “HR(f). a2
minorant type [11] for approximated calculation of definite In 7(x)
integrals. !
Let us prove that
b The resulting formula is called a combined formula of the
lim. M: f(a). (7)  minorant type [11] for an approximate calculation of definite
%M In(f(b)/ f(a)) integrals.
: We shall estimate the remainder R,(f)for the con-
Actually, structed formula of the minorant type. Since
b)— ) 1 n—1Yis1
= i —— R,(£)=2 [ (/(x)=m (x)dx, 13)
n(f( )/f(a)) W—nl f(b) 7(b)-/(a) i=0
" 7(a) then
— 1 — 1 — n—1 iz
. f(b) /(b)if(a) . f(b)—f(a) f(b)if(a) R, (f)|SZ _[ |f(x)_m/(x)|dx (14)
lim In lim In =0 x;
Mﬁ1 f(d) M 1 f(a)
/() /(a) If we assume that function f(x) on interval [a,b] satis-
f(a) fies the Lipschitz condition with constant L and on each of
= /(a] =/(a). (8)  the intervals [x,,x,,,] is monotonous, then
l(ign ln[1+ (b} /(a )J 71 iyt
o (a) |5 2, J |f 1+1 x,.)|de

If function f(x) € C[a,b] on interval [a,b] s satisfies the
Lipschitz condition with constant L and within this inter-
val f'(x)does not change a sign, then

=Jj|f(x)—m/(x)|dxs

Sj:|f(b)—f(a)|dxSLI|(b—a)|dx£L(b—a)z. 9)

In order to record the constructed formula of the
minorant type for calculating definite integrals, we shall
split the interval of integration [a,b] into n equal parts of
length

b-a

h=

n

with points

x;,=a+ih, i=01,...,n,

n—1%izt

<L j Xy - (15)
Hence

b— 2
Rﬂ(f)|sl( na) (16)

Thus, the following theorem holds.

Theorem 1.1f function f(x) on interval [a,b] satisfies
the Lipschitz condition with constant L and on each of the
intervals [x1 1,x] i=1,2,...,n is monotonous, the formu-
la (12) holds and the evaluation of accuracy is performed
(16). If function f(x) is convex on interval [a,b], then the
inequality holds

n—1Yist

jf Jdx <Y [m,(x) (17)
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Theorem 2.1f f(x)eC?*[a,b] and f(x)>0,x€[a,b],



then

2

<l
R, (/)| max f (x)max

2

d
Wln(f(x))

: (18)

that is, a quadrature formula (12) will be of second-order
accuracy.

The quadrature formula constructed has the same com-
plexity and the same order of accuracy (in case the condi-
tions of Theorem 1 or 2 are fulfilled) compared with the
quadrature formula of trapezoids. At the same time, if func-
tion f(x) takes the form

f(x) =b, exp(cix),x € [xi_pxi], i=12,...,n,
then the quadrature formula of the minorant type produces

the exact value of the desired integral. This is the advantage
of the method.

5. Results of research into an interpolation numerical
method to solve the Cauchy’s problem for ordinary first
order differential equations

5. 1. Algorithm of the method to solve the Cauchy’s
problem for ordinary first order differential equations

Consider the Cauchy’s problem for ordinary first order
differential equation

y'=/(xy),

y(xo): Yo-

(19)
(20)

Let us assume that the solution to this problem should be
found on certain interval [x,,x,+a], where a>0. In this case,
we shall consider that in region D, which contains a rectangle

Rz{xOSxSx0+a,|y—y0|Sb}

function f(x,y) is continuous and satisfies the Lipschitz
condition by y, that is,

|f(x,y1)—f(x,y2)| <Lly, -y,

where L is some constant while (x,y,) and (x,y,) are any
two points of region D. Choose on interval [xo,x0+a], a
system of points x,,x,,...,%,, where

x,=%,+kh (k=01...,n), h>0, x,<x,+a.

Then, by employing the apparatus of non-classical mi-
norants and diagrams of the Newton’s functions, assigned
in a tabular form, we shall build interpolation numerical
method for solving the problem (19), (20). That is, we shall
develop a method for finding the approximated values
Yo Yy Y, Of the exact solution y=y(x) to the problem
(19), (20) in points x,,x,,...,X,,.

Let us clarify the issue of convergence, accuracy and
computational stability of the techniques.

Let y=y(x) be the desired solution to the problem
(19), (20). By substituting it into equation (19), we shall
obtain the identity

v ()= (xy(x)) @h

Integrate this identity at each of the intervals [x,x,,]
(i=0,1,...,n—1). We receive

it

y(xi+1):y(xi)+ jf(x,y(x))dx

xi

(22)

Without reducing generality, we shall assume that

f(x,y(x))> 0
for all
xe[x,x,+al.

Construct for function f (x, y(x)) Newton’s minorant
m,(x) by two points

(X,-, (xl-yy(x,-))) and (xi+1’f(xi+1’y(xi+1)))'

We receive

1

my (x)=(A" B (23)

where A, :f(xi,y(xi)), B, =f(xi+<,y(xiﬂg). Next, we shall

substitute integrand function f(x,y(x)) in (22) with a
Newton’s minorant. We obtain

y(xm): y(xi)+ jmf (x)dx+RM,

where is the remainder. Then, by computing integral at
A, # B, we receive

y(xm) =

=y(xl.)+h f(xi+1r?/(xi+1))_f(xiv!/(xi)) +R .

hl(f(xiwy(xm))/f(xi’y(xi))) "

(24)

At A =B,

y(xm) = y(x,.)+ hf(xi’y(xi))+ R,
Note that on the basis of superior boundary

1im(1+x)£ =e

lim f(xiw!/(xm))_f(xi’y(xi)) _
h=0 ln(f(xiﬂ’y(xiﬂ))/f(xi’y(xi)))
:f(xi,y(xl.)).

In fact,

(25)

f(xi+1vy(xi+1))_f(xi’y(xi))

" ln[f(xwy(xm)))

f(xy(,))

f(xi,y(xi))
— g %0
f(xi+1’y(xi+1))_f(xi’y(x,‘))]f(x'“'y(’:m))—/(xl,y(xi))

f(xwy(xi))

lim In [1 +
h—0



Since at A—0

f(xi+1vy(xi+1 ))_f(xivy(xi))

—0,

f(xi’y(xi))

then it means that the boundary (25) holds.
Thus, in order to find the approximate values y,,y,,...,,
of solution

y=/(x)

to the problem (12), (16), we shall obtain formula

f(xi+17yi+1)_f(xi’yi)
ln(f(xiﬂ’yiﬂ)/f(xi’yi))

Yiu=Y; +h

(i=01,...,n-1), (27)

where y,=y(x,).
If

f(xi+1’yi+1): f(xi’y(xi))

for certain i, then, as it follows from (25), y,,, will be
searched for by formula

yi+1:yi+hf(xi’yi)' (28)

Theorem 3. If in region D, which contains a rectangle
R={x, <x<x0+a,|y—y0|Sb},

function f(x,y) is continuous, satisfies the Lipschitz condi-
tion at variable y with constant L and

where N is some constant, then the approximated values
Y, Yy, Y, found from formula (7), at #— 0 uniformly, rel-
ative to x, converge to the exact solution

<N<o<>
8x dy

(29)

y=y(x)

to the problem (19), (20).
Theorem proving. First of all, note that, similar to (25),
the following boundary holds

S oY) = S (X0 1,)

= , 30
hl_{g In(f (X Ypu) / S0 93) =/ o) ©0
Let
& =Y~ y(xk)

be an error of the approximated value of solution y = y(x)
to the problem (19), (20) in point x =x,. Then the error
gain at the (k+1)-th step will be equal to

Ag,=¢,, —¢€, :(yk+1 _yk)_(y(xk+1)_y(xk)):

= f(ka?/kn)—f(xk,yk Frst
ln(f(xkﬂ’ykﬂ)/f(xk,yk)) ;[f X, y

Since

R

Jf (2, 9(0) dv = (2 =) f (0, 9() | '—

Lt

J e Y =

R f

=hf (2, y(x,) - j (@=2) 5 (32)

then

-k f(xkﬂyykﬂ)_f(xk’yk)

ln(f(kaykn)J
f(xkryk)

~f(xy(x) |-

(33)

We can write based on (30)

S (oY) =/ (20 0) = [ (4, 9,) -8, (h),
1n[f(x“y”)J
f(xk7yk)

where §,(h)—>0 at A—0. That is why

f(xk+1’yk+1)_f(xk’yk)

/(xk+1’yk+1)J
In| 22?7t/
n[ f(xk’yk)

=f(xkryk)_f(xkry(xk))_8k (h)

_f(xk7yk)=

(34)

By employing the Lipschitz condition for function
/(x,y) along y, we receive

|f(xk’yk)_f(xk’y(xk))|£L|yk _y(xk)lz Llsk | (35)
And based on condition (29), we obtain

J (x-x,,) fdx <N _[ | x— xk+1|dX——. (36)
Thus,
| Ae,|< Lh| ek|+%Nh2+h| 8,(h)|. (37)

From inequality

| &=l 2] & | &
it follows that

el ~| €| < LA ek|+%Nh2+h| 8.1 |
or

| &l SA+LA)| Ek|+%Nh2+h| 8,(h)|-



We have derived a recurrent formula for the estimation
of error at the (k+1)-th step via the error at the k-th step.
Substituting this formula with £=0.1,..., n—1, we receive

|£1|£(1+Lh)|£0|+%Nh2+h|80(h)| (38)

or

| 81|%Nh2 +h|8,(h)|, (39)

since €, =y, —y(x,)=0;
| e,|<(1+Lh)| £1|+%Nh2+h| 8,(h)|<
S%th((1+Lh)+1)+h((1+Lh)| 8o(h) |+ 8,(h)|)

e, S%th ((1+Lh)’H +(1+ L)+ ---+1)+

+h((1+LhY"™"| 8,(h) [+ (1+Lhy| 8,(h) |+--+

8n—1(h) | )
Assume
0325—1' 8,(h) | =8(h).

Then

gGNhZ +h6(h))-((1+l,h)"” +(1+Lh)" - +1)

or

€

n

1(1 )
SZ(ENh+8(h))~((1+Lh) -1).

Because at #>0, the inequality e" >1+wu, holds, then
|e |si(1Nh+8(h)).(e"“ -1).

"L 2
If one considers that

nh=x,-x,<a and 8(h)=Ch,

where C is some constant, then we finally receive

| £n|s%(%N+C)~(e”L ~1).

It follows from here that at & — 0, regardless of x, we
have |e,|]—0. This means that the approximates values
Yy, Yg, - Y, at h— 0 uniformly relative to x converge to the
exact solution y=y(x). The theorem is proven.

It follows from the proven theorem that the method pos-
sesses first order of accuracy relative to /.

Formula (24) is actually the equation for finding y,,,.
That is why, in order to compute y,,,, we shall construct an
iterative process

(40)

f( z+1’y1+1) ( i’yi)
ln(f o)/ 1 (%9)

yi =y, +h

=h

where ") is the chosen zero approximation, for example, by
the Euler method:

y1+1 y1+hf( 17y1) y(xo)
Accordingly, if for some i and k&

f( ,+1ry,+1) f(xlv?/)

is satisfied, then at this step y (ks
formula

1)

) will be searched for by

(k+1)
ym _yi+hf(xi’yi)' (42)
We shall find at which condition this iterative process
converges. An dttl“lbut(, of the end of the iterative process is
the condition: |y —y"|<e. After this, we accept

Y=y (i=01,..,n—1).

Consider
| Z/;ff) —Yiu|=
-} S Xy k)) S(x,y) _ S Yi) — S (1) _

In (f(xwyiff)/f(x,-,y,- ) In (f(xiw yi+1)/f(xi? y,))

f(xi’yi)_f(xﬂﬂyzgkl)) _ CALLICINE M) '
In (f(xi7yi)/f(xi+1?yi(f1)) ) In(fCx, 9/ (i Y) )

Sinceat h—0

f(xi’yi)_f(xﬂwyi(ﬁ)) -0
f(xiﬂ’yg?)

f(xi’ yi)_f(xi+17yi+1)
S Xty Yir)

-0,

then
f(xi’yi)_f(xi+1?yz+1
In (/o)) Syl

f(xi’ yi)_f(xi+17yi+1)
In(fCx;, )/ f (X 9,01) )

where 8*)(h)—0 and §,,,(h)—0 at h—0. That is why

i+l

f( 1+1’y7(+k1)) Sfﬁ)(h)

= J (X0 Yin) =8, (R),

(k+1)

|yi+1 ~Yiu|=
= h| (G 4D = @ 1.0)) = (B2 () =8, () | <
<h| [ YD) = [ i) |+ HD (B,

where

i+l i+l

80 (=| 88 () =8,.,(hy .

By employing the Lipschitz condition at variable y for
f(x,y), we receive

|y + 13 (h).

i+l

ShL| y'(k) “Yin

i+

“Yin

Hence, at £=0,1,...n—1, we obtain



| y,(g “Yin ShL| yi(+01) Y| T hgii?)(h)v
| Y = Y| S hL| Y~ Y|+ hgii?(h)ﬁ

<(hLy’ | yfﬂ) Y

(m)
| Yist =Yin

i+1

+h( ALSY () + 8 (h))

0)
Yist —Yin

<(hLY"

+

Since, based on superior boundary
1

1in})(1+x)?=e.

We obtain

im S §i) = (X, 91)
k=0 ]n (f(xiﬂ’giﬂ)/f(xi’gi) )

:f(xivgi),

+h (ALY 8 () + (ALY 8. () +-+++ hES S () + 8" ().

i+l i+l i+l

Assume

max 1gii]")(h) =35,.,(h).

0<m<n-
Then
(n) n (0)
|yi+1 Y| SALY" | Y.} = Y|+

+h8,,,(h) (ALY + (hLY"” +-+-+ hL+1)
or

1—(hL)"
1—hL

(n)

(0)
| Yit =Yin

Yist = Yin

+ hSi+1(h)

<(hLY"

It follows from what we received that at 2L <1 the iter-
ative process converges.

Because a Newton’s minorant consists of convex arcs, this
method produces more accurate results than known two-point
methods, in the case when the function f(x, y(x)) is convex.

6. Discussion of results: a study of computational
stability of the method

Let us consider an issue of computational stability of the
given method.

Let §, be an approximated value of exact initial value y,
while g is the absolute error of the initial approximation, that is,

€ :l go_yol-

Then, instead of formula (22) to cal-
culate the approximated values of solution
y=y(x) in points x,x,,..,x,, we shall
receive formula

nr

S ¥ = S (2, 7))
In (f(xm: b)) f(x, 7)) )

(i=0.1,...n-1).

gm = gz‘ +h

If we denote

e/ =|g,-y| (=01,..m),

lim S ¥i) = S (%, Y)
h=0]n (f(xi+17yi+1)/f(xi7yi) )

=f(xi’yi)’

and then

f(xi+1’gi+1)_f(xi’17i)
In (f(xi+1?gi+1)/f(xi’ ) )

S &y = (L)
In (f(xmrym ) (x5 9,) )

where §,(h)—0 at #—0. That is why

=[x, 5,)—-8,(h),

=f(xir yi)_si(h)V

el <€ +h| (f(x, 5)— [(x,9)) +(3,()=8,(h) |

Function f(x,y) satisfies the Lipschitz condition at
variable y with constant L, which is why

e <€+ Lh|§,-y|+h|8,(H)-8,(h)|
or

g, <(1+Lh)e]+hd,(h),
where

8,(hy=h|8,(h)=8,(h)|.

But gl.(h) —0at h—0.Thenat i=0,1,...,n—1 we receive
By denoting

g] <(1+ Lh) &)+ h§,(h);
&, <(1+Lh)e;+ hd,(h) < (1+ Lhy*e; + h((1+ Lh) 8, (h) + 8,(h));
&, <(1+ Lh) e, +hd,(h) < (1+ Lh) &) + b ((1+ Lh)*8,(h) + (1+ Lh) §,(h) + 8,(h));

e/ <(1+Lh)"e|+h ((1+Lh)”"§0(h)+(1+Lh)"’251(h)+---+5,H(h)).

jmax_ 8,(h)=38(h).
We shall obtain

e, <(1+Lh)"e) +

+hd(h) ((1+ LAY+ (1+ LRy + -+ +1)

then
€ :| Yin _ymlz or
y f(x'1’g'1)_f(x"g') f(x'1ry'1)_f(x"y') ’ nat 1 n
= (yi—yi)+h[ B J ] R i Tt A < e <(1+Lh)"ey+—3(h)((1+Lh)" —1).
In (/@ 50/ S 5) - I0(f G 91)/ S (09) ) A )
_— - B Considering that at #>0 the inequality
<e/+h S §i) — S (2, ) _ S oY) — S (x, 4,) ' " >1+u, holds, then

In (f(xiw gm)/f(xiv v, ) In (f(xmvym )/f(xi’ Y;) )




1
e < th8/+_8h th_1
(sete e T8 (e 1)

or
e, <el'e +L5(h) (e -1).
" L

We have on the basis of the derived inequality that the
error of initial data is not piled up, that is, the method pos-
sesses computational stability.

Example.

It is required to find a numerical solution to the Cauchy’s
problem

Yy =" +e" =2y +y°, y(0)=0.5 (42)

in interval [0;1]. Exact solution

is obtained by introducing a new variable and by taking into
account the original condition. Let us also compare the solu-
tion found by using the new method with the Euler method,
and the Runge-Kutta method of fourth order. The solution to
the problem is given in Table 1.

Table 1
Solution to problem (42) obtained by different methods
No. x ym yE yR—K y*
0 0 0.5 0.5 0.5 0.5
1 0.02 0.52515 0.525 0.52515 0.52515
2 0.04 0.55062 0.55031 0.55061 0.55061
3 0.06 0.5764 0.57594 0.5764 0.5764
4 0.08 0.60252 0.6019 0.60252 0.60252
5 0.1 0.62898 0.6282 0.62898 0.62898
6 0.12 0.6558 0.65485 0.6558 0.6558
7 0.14 0.68299 0.68187 0.68298 0.68298
8 0.16 0.71055 0.70926 0.71055 0.71055
9 0.18 0.73851 0.73704 0.7385 0.7385
10 0.2 0.76686 0.76522 0.76686 0.76686
11 0.22 0.79563 0.79381 0.79563 0.79563
12 0.24 0.82483 0.82282 0.82482 0.82482
13 0.26 0.85446 0.85227 0.85445 0.85445
14 0.28 0.88454 0.88216 0.88453 0.88453
15 0.3 0.91508 0.91251 0.91508 0.91508
16 0.32 0.9461 0.94334 0.94609 0.94609
17 0.34 0.9776 0.97464 0.9776 0.9776
18 0.36 1.00961 1.00645 1.0096 1.0096
19 0.38 1.04212 1.03876 1.04212 1.04212
20 0.4 1.07516 1.07159 1.07516 1.07516
21 0.42 1.10874 1.10496 1.10874 1.10874
22 0.44 1.14288 1.13888 1.14287 1.14287
23 0.46 1.17758 1.17335 1.17757 1.17757
24 0.48 1.21285 1.20841 1.21285 1.21285
25 0.5 1.24873 1.24406 1.24872 1.24872
26 0.52 1.28521 1.28031 1.2852 1.2852
27 0.54 1.32231 1.31717 1.32231 1.32231
28 0.56 1.36005 1.35467 1.36005 1.36005
29 0.58 1.39845 1.39282 1.39844 1.39844
30 0.6 1.43751 1.43164 1.4375 1.4375
31 0.62 1.47725 1.47113 1.47725 1.47725
32 0.64 1.5177 1.51132 1.51769 1.51769
33 0.66 1.55886 1.55221 1.55885 1.55885
34 0.68 1.60075 1.59384 1.60074 1.60074
35 0.7 1.64339 1.6362 1.64338 1.64338
36 0.72 1.68679 1.67933 1.68679 1.68679
37 0.74 1.73097 1.72323 1.73097 1.73097
38 0.76 1.77596 1.76793 1.77596 1.77596
39 0.78 1.82176 1.81344 1.82176 1.82176
40 0.8 1.8684 1.85977 1.8684 1.8684
41 0.82 1.91589 1.90696 1.91589 1.91589
42 0.84 1.96426 1.95501 1.96425 1.96425
43 0.86 2.01351 2.00395 2.01351 2.01351
44 0.88 2.06368 2.0538 2.06368 2.06368
45 0.9 211478 2.10457 211478 211478
46 0.92 2.16682 2.15628 2.16682 2.16682
47 0.94 2.21984 2.20896 2.21985 2.21985
48 0.96 2.27386 2.26262 2.27386 2.27386
49 0.98 2.32888 2.31729 2.32889 2.32889
50 1 2.38495 2.37299 2.38495 2.38495




In Table 1, y" is the exact solution, y” is the solution ob-
tained using the new interpolation method of the minorant
type (over 2 iterations),  is the solution obtained applying the
Euler’s method, and y** is the solution obtained employing
the Runge-Kutta method. Thus, the new interpolation method
produces a solution that is very close to the exact solution.

As one can see, it is necessary to run a lot of iterations
in order to solve the Cauchy’s problem by the new method,
which is the main shortcoming of the method.

6. Conclusions

1. We developed and constructed an interpolation nu-
merical method to solve the Cauchy’s problem for ordinary

first order differential equations. Underlying the method
is the so-called apparatus of non-classical minorants and
diagrams of Newton’s functions, assigned in a tabular form.
In the case of a convex function, this method produces more
accurate results than the Euler’s method. The method also
does not require solving the systems of linear algebraic
equations or superimposing additional conditions on the
equations.

2. The order of accuracy is proven, as well as computa-
tional stability, convergence of the new method, and an error
of approximated value is estimated by the new method. The
method has a second order of accuracy, similar to the Euler’s
method, yet produces more accurate results in the case of a
convex function.
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