u] =,

Ha ocnogi sracmugocmeii mampuup moJiepanmuo-
cmi i si0ep Oynesux PynKuiii 6cmamnosiieno Kpumepii
peanizoeanocmi Qyuxuiu aneedpu aoz2iku 00HUM y3a-
2a7IbHEHUM HEUPOHHUM eJleMeHMOM 6IOHOCHO 006Lb-
HOi cucmemu xapaxmegie. Ompumano pso HeoodxXioHux
ma docmamuix ymoe peanizoeanocmi oyneeux Qyux-
Uil 00HUM Y3A2aNbHEHUM HEUPOHHUM eSleMEeHmOoM i
Ha 0CHOGL 0oCMAmHIx YM068 Po3podaeno epexmuenuil
anzopumm cunme3sy UiIOMUCA0BUX Y3A2ATbHEHUX Hell-
POHHUX eJleMeHMI6 3 8CJIUKUM HUCTOM 6X00168

Knouosei caosa: mampuys moaepanmmocmi, a0po
oyneeoi Qyuxuii, xapaxmep epynu,cnexmp 0ynesoi
dynxuii

= yu

Ha ocnoganuu mampuy, monepanmuocmu u soep
O0ynesvlx PynKuUll ycmamnosien Kpumepui peanusy-
emocmu QyHKuul anzedpovt n02uKU HA 00HOM 00600-
WEeHHOM HEUPOHHOM 3JjleMeHme OMHOCUMETbHO NPo-
U3604bHOU cucmemvt xapaxmepos. Iloayuen pso
He00X00UMBIX U 00CMAMOUHBIX YCAOBUL Peanu3yemo-
cmu oyneevix Qynkuuil Ha 00HoM 0000ueHHOM Heli-
POHHOM 3JleMeHme, U HA OCHOBAHUU OO0CMAMOUHbLX
ycaosuil paspadoman 3 exmuenvlii anrzopumm cun-
me3a UesOUUCTCHHBIX 0000UEHHBIX HEUPOHHBIX 3Jle-
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1. Introduction

Intensification of theoretical development and practical
applications has been observed recently in the field of in-
formation technology and neurocomputers. This is due to
the increased interest in information systems and neurolike
structures that have found wide application in encription,
protection of information, image recognition, forecasting
and other fields of human activities.

Solving complex applied problems using neuromorphic
structures will become more effective when generalized neu-
ral elements (GNE) (which by their functional capabilities
exceed classical neural elements) with threshold functions
of activation will be used as basic elements. Therefore, infor-
mation processing in the neurobase will be more effective on
condition that generalized neural elements are used. To this
end, it is necessary to devise practically suitable methods for
the synthesis of neural elements with generalized threshold
functions of activation and synthesis of logic circuits from
them.

Relevance and practical value of development of new
methods for the synthesis of generalized neural elements are
evidenced by an increasing volume of investments in soft-
ware and hardware for artificial intelligence. It should be
mentioned that an extremely important requirement to the
new methods of synthesis of generalized neural elements is
that these methods should be practically suitable for synthe-
sizing GNE with a large number of inputs. This is explained
by the fact that the volume of information and the degree of
complexity of the tasks that are solved in the neurobase are

constantly growing. That is why the studies giving results
applicable in synthesizing generalized neural elements with
a large number of inputs appear to be topical. The applica-
tion of generalized neural elements can reduce the number
of artificial neurons in the neural networks employed for the
tasks on recognition, compression and encoding of discrete
signals and images.

2. Literature review and problem statement

Currently, neurolike structures are increasingly used to
solve varied applied problems. An indication of this is the
increase in the number of scientific publications and new
methods of training (synthesis) of neural networks used in
various spheres of human activities. Development of new
methods for data processing in the neurobase is a relevant
and practically important task. For example, [1] introduces
the concept of the operational base of neural networks and
shows its application in the development of effective data
processing methods. Possibility of using artificial real-time
neural networks in the problems on digital signal processing
is considered in article [2], while paper [3] investigates the
feasibility of employment of neuromorphic structures for
solving prediction problems in the field of intelligent data
analysis.

The field of practical applications of neural network
models is vast. These models are effectively used to im-
prove resolution of images based on artificial neural net-
works [4], for segmentation [5], classification and pattern




recognition [6, 7]. On the basis of neural networks, intel-
ligent blocks of various systems for controlling chemical
processes [8] and for the classification of diseases [9] are
developed. These models are successfully used in diagnos-
tics [10], economic [11] and biological process [12] fore-
casting and morbidity prediction for the diseases under
study [13]. As the studies show, neural network methods
are widely applied for the compression of discrete signals
and images [14—16] and in the banking sector for credit
risk assessment [17].

It should be mentioned that various iterative methods
and methods of approximation of various orders form the ba-
sis for construction of neural networks for the above spheres
of human activities. These methods solve the tasks of train-
ing one neural element with varied functions of activation
and training neural networks consisting of these elements
with a certain accuracy. However, there are problems for
which approximate solutions are unacceptable, for example,
the problem of feasibility of Boolean and multivalued logic
functions by a single neural element with a threshold func-
tion of activation or a generalized neural element relative
to a specified system of characters and in the synthesis of
combinational circuits from the mentioned neural elements.
These combinational circuits can be successfully used in
the construction of functional blocks of logical devices for
controlling technological processes, compression of discrete
signals, recognition of discrete images and so on. Disadvan-
tages of approximation methods and iterative methods of
training neural elements and neural networks for solving
problems on the implementation of Boolean and multi-
ple-valued logic functions by a single neural element (neural
network) are as follows:

—instead of an exact solution, one obtains an approxi-
mate solution of the problem (for example, a discrete func-
tion is implemented by one generalized neural element and
the approximation method and iterative methods show its
unreliazability relative to the prescribed accuracy (here
a problem appears about choosing exactness, the order of
approximation and convergence of the process of training
the generalized neural element relative to the prescribed
accuracy));

— ability of applying methods of approximation and iter-
ative methods of training artificial neurons with just a small
number of inputs (up to 50) whereas biological neurons can
have thousands of entries.

Given this, a development of methods for checking re-
alizability of Boolean functions by one generalized neural
element relative to an arbitrary system of characters should
be recognized as promising. Solutions on the synthesis of
corresponding generalized neural elements under certain
restrictions on their nuclei can be used in a case when appli-
cation of approximation and iterative methods is inexpedient
or practically impossible.

3. The aim and objectives of the study

The study objective was to develop effective methods for
verifying realizeability of the logic algebra functions by one
generalized neural element and methods for the synthesis
of generalized neural elements with integer structural vec-
tors. On the basis of these elements, one can develop logical
blocks of different devices for solving problems of practical
importance in the field of compression and transmission of

discrete signals, recognition of discrete images, diagnosis of
technical devices.

To achieve this goal, it was necessary to implement the
following:

— to establish a criterion of realizability of Boolean func-
tions by one generalized neural element;

— to ensure such necessary conditions for realizeability
of the logic algebra functions by one neuron element with
a generalized threshold activation function which would be
easily verified;

— to obtain sufficient conditions for realizeability of the
logic algebra functions by one generalized neural element
by establishing which algorithm of the synthesis of integer
generalized neural elements is constructed.

4. Mathematical model of neural elements with a
generalized threshold activation function and their
application when implementing Boolean functions

4.1. The criterion for implementing Boolean func-
tions by one generalized neural element

Let Hy={-1,1} be a cyclic group of second order,
G,=H,®...® H, is the direct product of n cyclic groups H,
and x(G,) is the group of characters [18] of the group G,
over the field of real numbers R. Use the set R\{0} to define
the function:

1, if x>0,

~1, if x<0. M

Rsignx —{

Let Z,={0,1}, i€{0, 1,...,2"—1} and (iy,...,i) is its binary
code, i. e.

i=4,2" 4,2+, 4 €{0,1).
Values of character y; on the element
g = ((-D",...(-1)")eG,

((oy,...,0,)eZ; — n-and the Cartesian degree Zy) are as-
signed as follows:

Hi(8) = (~1)MeR 2)
Consider the 2°-dimensional vector space
Ve={00:G, > R}
over the field R. Elements
%, (i=0,1,2,...,.2" ~1)

of the group X(G,) form an orthogonal basis of the space
Vg [18]. The Boolean function in alphabet {—1,1} specifies a
single-valued transformation f:G, — H,, i.e. feVg. Conse-
quently, the arbitrary Boolean function feVg can be uniquely
written in the form:

(8. 3

J(@) =sxo(®+sx (&) +...+s, %

PUE AP L]

Vector s, =(8),8;,..,5,, ) 18 called a spectrum of the
Boolean function fin the system of characters ¢(G,) (in the
system of Walsh-Hadamard basis functions [19]).



Taking various characters exept the main one, construct

an m-element set = 0% and consider the mathe-
matical model of the neural efement with the generalized
threshold function of activation relative to the chosen sys-
tem of characters:

J(x(8)-%,(8) = RSlgf{Zﬂ) X, (g)+0~)o} )

Jj=1

where vector w=(,,...,0,;0,) is called the vector of the
structure of the generalized neural element with respect to
the system of characters  and geG,.

If there exists a vector satisfying equation (4) for the giv-
en function f:G,—Hj and the system y = {X, ek }, then it
is said that function f is realized by one generalued neural
element relative to y.

It is obvious that the neural element in relation to the
system of characters x={),XoXsr-- X it} coincides with
the neural element with a threshold ‘activation function
(with a threshold element [20]). For an arbitrary Boolean
function f:G,— H,, one can always choose such a system
x that the generalized neural element realizes the function
[ relative to . Indeed, if no limitations are imposed on the
number of entries of generalized neural elements, then a
system of characters x(G,)\ %,- can be chosen asy. Then it
follows from (3) and (4) that an arbitrary Boolean function
is realized by one generalized neural element with a struc-
ture vector coinciding with the spectrum of the function in
the system of Walsh-Hadamard basis functions. Further, in
addition to this trivial case, in order to reduce the number of
entries to the GNE, consider systems y that do not coincide
with %(G,)\ x,- Obviously, the less elements in the y system,
the more efficiently these elements can be used in neural
networks for compressing, transmitting and recognizing
discrete signals and images.

Let

f(x1,...,xn)
be the Boolean function in alphabet {—1,1}, that is /:G,—Ho.

Consider the problem whether function f (x1,...,xn) is real-
ized by one GNE relative to the system of characters

x={x,-,x,-2,~-wx,-m}CX(GW),

and if so, then how its structure vector can be found?
Using transformation

1
'=—(x+1),
X = (x+1)

realize mapping {—1,1}—{0,1} and consider the system

x’={x; =%(xi1 1)1, =%(x,-2 1), %(xim +1)}.

Let

['-D={g<G, | f(®)=-1}

and

[(={g<G, 1 f(®=1}.

With the help of the system y’, find:

ren= U k@1 @)

g/

rro= U @ @)

g/l

The nucleus of the Boolean function f(x,,...,

x,) with
respect to the system of characters x of the group G, is
defined as follows:

L, i 5|5,

K(f)=
LD, i 5O 0D,

if

L Onfi(=-D=92,
where | f;(i)| is the number of elements of the set

1@ (ei-11}).

If f7{(1)N [} (-1)#@, than nucleus K(f,) does not
exist and this means that function f is not realized by one

GNE relative to the system .
Let

K(f)={a,=

Construct the reduced nucleus K(f,), relative to the
element

-0}

(Ot s 00,08, = (0]

a, =(a,...,

o) € K(/)

and a set of reduced nuclei T(f,) as follows:

K(f)i=aK(f)=

={(ci®0,,..,0. ®a)|(0...,

a,)eK(/)),
T(H)={K(), =aK(f)li=1,2,...q},

where @ is the sum by modulus 2.

Let Z,={0,1} and Z; be the n-th Cartesian power of the
Z, set. If the following conditions are fulfilled for the func-
tion f:G,— H, and the system y = {xl.1,...,xl.m}

S AL 1)=2 and 25 # £ (D)o £ (D),

then function f is a partially defined function in the group
G,, and a concept of a extended nucleus with respect to the
system of characters y is introduced for such functions as
follows: let K(f,)={a,,...,a,} be a nucleus of the Boolean
function f with respect to x VIR and f~ '(*) is the
sets of those nests with Z' for which Tunction was not de-
fined, then the following w1ll be implied: under the extended
nucleus of function f relative to the system y:

K(fx,s)= {a1,...,aq,b1,...,bs},

where b,,...,b, are the arbitrary elements of the set f,”(*)
and g+s<2"7. i It should be mentioned [20] that the Bool-



ean function fis simultaneously realized or is not simultane-
ously realized by one neural element in different alphabets
(1} (fo.1).

If notation b, =a,,,...b =a_,, is introduced, then the
set of reduced nuclei of the Boolean function f with respect
to the system y = (0o 3 1 specified as follows:

T(f)={K(f»$); =

=a,K(f,9)|i=1,2,.,q+s}

Let E,, be the set of tolerance matrices [21] and

K(f)={a,...a}

is the nucleus of the Boolean function f:G,—H, with respect
to the system of characters y = 0% ) of the group G,

over the field R. Use elements of the nucl”eus K(f,) to con-
struct matrix K.(f,) as follows: the first row of the matrix
will be the Vector

Ay = (O‘éu)v O‘émn)

with K(f,), and the second row of the matrix will be vector

A = (o‘é(zw 1Ol 2y )

the last row of K,(/f,) will be

A~ (O‘aqw ‘xa(q)n)’

where E(i) is the effect of substitution of e S, fori. Denote
the first » lines of the matrix LeE, by L(r) and enter the
concept of representation of the nucleus K(f,) (extended
nucleus K(f,,s)) with the matrices of tolerance with E,, as
follows: if there is such an element §e.§, and such a matrix
LeE, that K(f)=L(q) (K(f,s)=L(q)), then the nucleus
K(f,) (extended nucleus K(f,,s)) admits representation by
the matrices of tolerance with E,, .

Theorem 1. The Boolean function f:G,—H, is realized by
one generalized neural element with respect to the system of
characters x={x, ,- ,X, } of the group Gn over the field R, if
and only if one of1 the conditions exists and is fulfilled:

1) the nucleus K(f,) admits representation by the matri-
ces of tolerance with E,, and

=/ DUy

2) the nucleus K(f,) or extended nucleus K(f,,s) ad-
mits representation by the matrices of tolerance with E,, and

Zy# [ (DU [ (1),
Proving. In the case
zy = (U D

provided that K(f,) exists, the theorem is proved analogous
to Theorem 1 in [21].
Let

Zy# [ (DU L (=D,

Q,, be the set of all m-dimensional real vectors w such that
for all different x,,x, € Z)', numbers (x,,w) and (x,,w) are

different ((x,,w) is the scalar product of the vectors x;, w)
and LeE,,. Denote by h(L(g)) the set of m-dimensional Bool-
ean vectors constructed from the rows of the matrix L(g).
Obviously,

K(f)=hK.([,))

forall EeS,.
If the function f:G,—Hj, is realized by one GNE with
respect to the system

X={Xi1 oo i 2

then in accordance with [22], this function is realized in
alphabet Z5 as well. This means that there exists such vector

w=(0,..,0,)€Q,,
that satisfies one of the following conditions: if
K(/,9)=1,'D),
then
VxeK(f,,s)
and
VyeZ\K([s) (xw)>(y,w), )
in the opposite case, (K(f,,5)= F(-D)
VxeK(f,,s)
and

VyeZ\K(f,s) (xw)<(y,w). ©6)

On the basis of (5) and the properties of the matrices of
tolerance [21], it can be asserted that there exists such ma-
trix of tolerance L, € E,, that

m’

K(f»$)=h(L,(q+5)).

In the case of (6), we have

K(f,»$)=h(L, (q+9)),

where w, =—w. Thus, K(f,s) admits representation by noy
matrices of tolerance with E,, so the necessity is proved.

Let K(f,s) admits representation by the matrices of
tolerance with E,,, that is, there is such matrix

L=(o,)€E, (i=1,2..,2""j=12,.,m),

that

K(/,$)=h(L(g+5)).

Make the matrix of tolerance L =(o,;) to correspond
to the matrix of tolerance L=(o;) in the following way:
s=2""—i+1 and oL =0l (o5 is an inverted value of ocy)
Define operation v for the matrices of tolerance L and I as
follows:



wi-(;)
L

According to the construction of the set E, [21], there
exists such vector

w=(0,..,0,)€Q ,
for an arbitrary matrix LeE,, that

(LvL)w'=cl, (7)
where

c, =(C,CyyCq.s € ) (€ > Cy > Cy > > 05 =2").

It follows immediately from equation (7) and equality

K(/,8)=h(L(q+5))

that there exists such vector w in the set Q,, which satisfies
inequality (5). This means that the generalized neural ele-
ment relative to the system of characters %’ with the weight
vector w in alphabet Z realizes function for f. These func-
tions, either are simultaneously realized or simultaneously
not realized by one generalized neural element. Sufficiency
is proven. Consequently, the theorem is proved completely.
Let

Q ={w=(0,,...,0,)€Q [0>0,>...>0,}

and

Er:z: U Lw’

weQ;ﬂ
where
(LW VL*W)~WT =cl.

Use the notion of reduced nuclei of the Boolean function
/:G,—H, with respect to the system of characters

1=, )

of the G, group and obtain the following on the basis of The-
orem 1 and equality

E,~{(gLY |LeE, geG,0e8,) [21]

Theorem 2. The Boolean function f:G,—H, is realized by
one generalized neuron element relative to the system of charac-
ters X ={x; X } of the group G, over the field R if and only
if there is K ) and one of the following conditions is fulfilled:

1) there is at least one such element K(f,);, in the set
of reduced nuclei T(f,) that admits representation by the
matrices of tolerance with E, and

Zy = [ (DU L (=1

2) there is at least one such element K(/,); in the set of
reduced nuclei T(fx) or such element K(fx,s),., in a set of
extended reduced nuclei T'(f,,s) which admits representa-
tion by matrices of tolerance with E, and E,.

4.2. Conditions necessary for the implementation of
Boolean functions by one generalized neural element

Verification of the conditions necessary for realization of
Boolean functions by one generalized neural element is an
important step in the GNE synthesis. With the help of these
conditions, functions of the logic algebra can be identified at
the initial stage of synthesis of generalized neural elements
which cannot be realized by one GNE in relation to a speci-
fied system of characters.

Theorem 3. If the boolean function f:G,—H is realized
by one generalized neural element with respect to the system
of characters y={x, ,....x; } of the group G, over the field R,
then there is a nucleus K (”]”X) and the following takes place:

a=(0,,....0,)eK(f)=a=(ou,...om)eK(f), (8

where o is the inverted value a.

Proving. As it follows from Theorem 1, there is a nucleus
K(f,) or an extended nucleus K(f,s) that admits repre-
sentation by the matrices of tolerance with E,,. Consequent-
ly, there exists such a matrix of tolerance LeE,,, and such an
element £e S, oranelement €S, , that one of equalities

+s7

K. (/)= L(q) or K.(f,.s)=L(q)

is satisfied. Rows of the matrix L are the elements of a certain
class of tolerance relative to

T:(0,...,0., )T(By-- . B,) & Fi(a, =B)).

It follows from this that the prematrix of tolerance L(g)
does not concurrently contain vectors

a=(a,...,0,,), a=(0,...,0n),

where a=(0,,...,0.,,) is an arbitrary row of the matrix L(g),
so the theorem is proved.
The vector

a=(a,...,0, )Ly
precedes the vector
b=(B,...B,)eZ (a<b), if o, <P, (i=12,..m).

Denote by M, the set of all such vectors with Z, that
precede the vector a.

Theorem 4. If the Boolean function f:G,—H is realized
by one generalized neural element with respect to the system
of characters y={x; ,....x; } of the group G, over the field
R, then there is a nitcleusmK(fX) and one of the following
conditions is fulfilled:

Nif 27 :fx‘1(1)ufx‘1(—1), then there is such an element
K(/,):, in the set of reduced nuclei T(f,) that

VaGK(fx)iﬂMaCK(fx)i; ®)

2)if Zy ¢fx’1(1)ufx’1(—1), then either there is such an
element K(f,),, in the set of reduced nuclei T(f,) which
satisfies condition (8) or it is possible to construct a set of
extended reduced nuclei T( fx,s), which contains such an
element K(fx,s)i that

VaeK(f,s),= M, cK(f,,s), (10)



The proving of this theorem follows directly from the
rules of constructing the set of extended reduced nuclei
T(f,s), of Theorem 2 and Theorem 3 in [23].

Suppose B=(B,) is a rectangular gxm matrix over
Z,,AcZ), e, isaunit vector the i-th coordinate of which
is equal to 1,

n(A)=lile, e A, KB)=3p,

and |A| is the number of elements of the set A.

Theorem 5. If the Boolean function f:G,—H, is realized
by one generalized neural element with respect to the system
of characters x={x, ,....x; } of the group G, over the field R,
then there is a nucleus Km(fx)={a1,...,aq} and the folowing
takes place:

1)if
Zy = 1 O£
and
2 <q<2(je(l,2,...m-2}),

then there is such element K(f,), in the set of reduced nuclei
T(f,) that

1) Vee{1,2..,q)k(K(f),)<j+1; (11)

2) In(K(f)i 2 j+1; 12)

2)if Zy # [\ (1)U [ (<1), then either there is an ele-
ment K(f,),, in the set of reduced nuclei T(f,) which satis-
fies conditions (10), (11), or it is possible to construct a set of
extended reduced nuclei T( fx,s), containing such an element
K(fx,s)i, that

3) 27 <q+s<2 (je{l,2,...,m—-2}); 13)
4) Vhe{1,2...q+s) k(K(f,5),) < j+1; (14)
5) [n(K(f,,s); 2 j+1. (15)

Proving. 1t is stated that function f:G,—H> is realized by
one generalized neural element with respect to the system of
characters x = {xi1 seenX; | of the group G, over the field R. Let

Z = [ (DU D),

then it follows from Theorem 1 that there exists a nucleus

K(f)={a,...a},

admitting representation by matrices of tolerance with E,.
Consequently, there is such matrix of tolerance HeE,, and
such element §eS,, that K.(f,)=H(q). If the first row of
the matrix K.(f,), is denoted by a, (§(i)=1), then

Kg(fx)i =H(q),

where H =a,HeE,, follows from the equality of matrices
K.(f,)=H(q).

Consider vector w=(®,,...,,)€Q,, with coordinates
satisfying conditions

i—1
o,=-1, o,=Y0,-1(i=23,..,m)

=

and a system of matrices of tolerance

L=(0),L,= Lo, L= Ly Oy (16)
' e L’i 01 e L*m—1 0m—1 '
where 0, is the zero column with size 2" x1.
It is easy to see that
(L, VL) w =c. A7)

It follows from construction of the vector w and (16) that
any matrix VeE, satisfies the condition:

Vke(1,2,...q k(V) < k(L)< jH.

Then, on the basis of equality

K.(f)i=H(q)(H,€E,)
and

V<qg<? Ge(l,2,.., .. .m=2}),
it follows that

Vke(1,2,...q) RK(f))<j+1.

The order number of row e, in any matrix of tolerance
VeE, does not exceed the order number of row e, in the
matrix

L (ie{l,2,...m—1}).

Consequently,

In(V(g)| 2|n(L,(9))|=j+1
follows from the inequality 2/ <g <2 and construction of

the matrix L,,. In view of arbitrariness of the matrix of tol-
erance Ve E, and K.(f,),=H,(q)(H, € E,), we have that

In(a,A)[2|n(L,(q))]= j+1
and the first part of the theorem is proved when
Zy =V ED
and
2 <qg<2 (Gell,2,...m—2)).
Let
Zy# [ (DU LD
and function f:G,—H> be realized by one generalized neural
element in relation to the system of characters x={x, ,..-,%; }

of the G, group. Then, based on Theorem 1, either the nucle-
us K(fx) ={a,,...,a}, or the extended nucleus

K(fx,s)={a1,...,aq,aqﬂwaw}



admits representation by the matrices of tolerance with E,,.
The number of rows of an arbitrary matrix of tolerance with
E, is 2™ therefore, q+s<2"" and inequality (13) takes
place for q+s. Inequalities (14), (15) are proved in the same
way as the inequalities (11) and (12) were proved above.
Consequently, this theorem is proved completely.

Let f:G,—H, be a Boolean function and f:G,—H, is its
nucleus with respect to the system of characters

X=X}
of the group G, over the field R. s(i;K.(f,)), Denote the
number of units of the i-th column of matrix K.(f,) by
s(i;K.(f,)) and enter the notation K(f,)=K(f,,0).

Theorem 6. If the Boolean function f:G,—H> is realized
by one generalized neural element with respect to the system
of characters = {x, " ,x, } of the group G, over the field R,
then there is an extended nucleos

K(f$) = (@8 8y, ) (5 20)

with element
a, e K(/,9),
elements

£eS§ .,0€8,

q+s?

than there is the following inequality for the extended re-
duced nucleus

K(f,5). =a,K(/,s)
and for all i€{2,3,...,m}
s(i—1;KZ(f,58),) 2 s(GKI(f,9),)- (18)

Proving. According to Theorem 2, K(f,,s) admits rep-
resentation by matrices of tolerance with E,, that is, there is
such matrix of tolerance LeE,, and such element & e S, that

K.(/,8)=L(q). 19)

Denote the first row of the matrix K.(f,,s) by

a,(&n=1

and, transform the equality with the help of this element (19)
as follows:
K.(f.5)=a L(q). (20)
The matrix L, =a,L defines vector weQ, , all coordi-
nates of which are negative since the first coordinate of the
vector ¢b =(L,VL,)-w" is 0. Choose the element 6€.S,, so
that the coordinates of the vector w, =w® are arranged in a
descending order. Then matrix

LW1 =(a, L)Y =a’l’
satisfies condition

(LW1 VL’:”)-WT =cl

w17

ie. L, €E, . The following is obtained from (20):

2y

alKZ (/i) =2l (@)=L, ().
Let
a=(0y,...,0,;,,0,1,0,,,...,0,)
be a row of the pre-matrix of tolerance L, (@) Then

b:(aﬂ' 7 i 2’1y 0 (x‘1+17 ’(xn)

will also be a row of the matrix L, (q) and the order num-
ber of row b in the matrix L, (q) 'will be smaller than the
order number a since w, € Q. ! This means that the follow-
ing inequality is fulf1llcd for any i€{2,3,...,m}, and for any

kef{1,2,...,q+s}):
s(i—1;LW1 (k)) > s(i;LW1 (k)).

The last inequality and equality (21) directly result in
inequality

(=LK ([p9)) 2 sGKI(S,59),)
and the theorem is proved.

4. 3. Conditions sufficient for the implementation of
Boolean functions by one generalized neural element

In this section, we consider conditions sufficient for re-
alizeability of Boolean functions by one generalized neural
element which can be successfully used in synthesis of neural
networks based on the GNE with integer-valued structure
vectors.

Let p be a threshold operator [23] with labels a,, o,
and K(f,,s)(s20) is an extended nucleus of the Boolean
function f:G,—H, with respect to the system of characters
x= e} of the group G, over the field R. Assuming

PR, )= p(af K™ (/,9))

obtain
PK(f )=
= P(K(f SOV D (KDY V p, (K(fp9), (22)
where
oK)= 2y (a7 K™ (f9)) = (L, 0,, .0, )
PUK(fp5) = 1y (a5 K(f,,9)) = (L, (60)0...0);
...................................................... g
Py (KU = P (a7 K ()= (5 () 0.0 ),

n— (jk+t0—1)

and g;2¢;>...2q; ,>0.

Theorem 7. Let K(f S)={a,,....a,} is the nucleus of the
Boolean function f:G, . 4y relative to the system of characters
X= {xl X }of the group G, over the field R. If it is possible
to construct Such an extended nucleus K (/,,8)(s=20) for which
there are such elements a, € K(f,,s),§ € Sq+S and ©, €S, ,that
Jor the extended reduced nucleus K(f,,s),=a,K( fx,s), the
Jollowing takes place:



Ko(fs) = p(af K™ (/,,9)),

(23)

then function f is realized by one generalized neural element
in relation to the system of characters ¥ .

Proving. To prove this theorem, it suffices to show that
matrix

p(al K™ (/,9))

is a tolerance prematrix of some matrix LeE,. We shall
show that there exists such m-dimensional real vector

w=(0,,...,0,)
which satisfies the condition
Vxe aZkK"*' (fx,s), VyeZy \aZ’*K"* (fx,s)
x,w)>(y,w) (24)
By the condition (23), matrix K.(f,,s), admits repre-

sentation (22), hence, ¢, is the least positive integer such
that g; #0 and

Y S
Qig1 == Gy, 0.

Denote by ZyroZy the last rows of the corresponding
matrices

(KL $))r- o0, (K([25)),

when ¢,>2, and construct vector w=(w,,...,®,) as follows:

it

Do=-lo,=o-1..0 =>o -1 (25)
i=1

are found sequentially from equa-

r

2) Coordinates o,

tions:
(zr,(a)“...,u)jm,...,ij,O,...,O)):
:(2,71,((01,...,u)ijf“O,...,O)),r=1,...,t(t=t0—1); (26)
3) mjk+1+1:"':('0m:
=(z,(0,,..., jk...,wij,O,...,O))—L (27)

The vector thus constructed satisfies condition (24).

Then existence of such a vector veQ; and such a matrix
L, eE,, follows from [22] that (L,VL,))-w"=c!. Conse-
quently, it is possible to construct a premarix of tolerance
L,(g+s) from the elements of the extended reduced nucleus
K(f,,8); and, in accordance with Theorem 2 (in the case
when ¢,22), the function f is realized by one generalized
neural element with respect to the system of characters y. If
t,=0 or ¢,=1, then, as it follows from the properties of the
matrices of tolerance of the set E_, the extended reduced
nucleus K.(f,,s), admits representation by the matrices of
tolerance with E, and the theorem is proved.

Use the set of vector coordinates {o,....a,, }

A= (0lyeens 0L jynry O o,)eZ)

e

to sequentially define the system of functions 83,8;,...,8‘. for

fixed ¢ and j (j > 2) in the same way as in [23] as follows:

o, if i<t
€0 ={a,(i=n), if i=j+h 28)
o, ], if i>j+¢;
where
k=01,...t; 7,7,...,r, €{1,2,..., i —1}.
Specify the following mapping through functions
Fop—
€ (k=0,...,t)
for fixed ¢ €{0,...,m—j} and j:
€20 5 20 (2, =101, 1, 2< j<m)
as follows:
gi(a)=(&}(0,),...&5(0, ), e0(at,), & 5(0,)ens
8;(uj+z)’£;(ocj+r+1)7'"rgz'((xm)) (29)

and define functional o in the set Z;' by the formula:

t
VaeZ) vj(a)= Yy 8;(0(1-)+283(0Cj+i),
0

iel, (j) i

(30)

where

L(H={1,2,...m}\{j,j+1,....j+t}.

Using functional v; for each ke{0,1,...,t}, construct a
set of Boolean vectors as follows:

F' =taeh(L,

J+k j+k

0...0)|v}(a)< j -1}, 3D

*

where A(L,,0...0) is the set of Boolean vectors which is
constructed from rows of the matrix (L}+k0...0).
Let

K(f)=1a,...a}

be nucleus of the Boolean function f:G,—Hj, relative to the
system of characters

X:{Xi1 ?""Xim}
of the group G, over the field R. Similarly to Theorem 5 in
[23] for generalized neural elements, we have:

Theorem 8. If in the extended nucleus

K(f,$)={a,...a,} (s20,q+s<2m 1)

of the Boolean function [:G,—H relative to the system of
characters

X:{X,‘1r'~"x;m}

of the group G, over the field R, there exist respectively such
elements a,c and integers

rh212..27,>0

in the group S, that



(32)

t
acKc(fx,s)=h(Lju)U( Xﬁ’”}
m=j

i=0

then function f is realized by one generalized neural element
in relation to the system of characters y.
Consider generalization of the system of functions

81;- (k=01,2,....t)
and functional v;. Let

a=((x1,...,(xj,...,0cjﬂ,..

Lo, )ELY,
te{0,1,...m-7j}, (j>2).

Construct a set of vectors u,(d) for fixed je{2,3,...,m}
and def{1,2,j-1}:

u,(d) = {(uy,...ou)) |y + .+ u,=

=1, w2, j—d)) (33)

and define the following through it:

1

U,=Ju,@).
1

~.

U
1|

Admit that u=(w,,...,u; YeU,, [, 22 (I, is dimension-
. u ' .
ality of vector u) and construct a system of functions
@0) (uh)  o(uo),
e el e

(u,k) —
8]' (U‘i) -
(o, if i <u,,
r—1 r
r-1 s -
0,27, if 2up<z£2up,
p=1 p=1

if i=j+k, (39

ll.l
- ai[ZupZ"‘i—rkH],

p=1

1“
oci[ZupZ'” +1], if
p=1

where k=0,1,....t, r€{2,3,...,0,}.
If [, =1, than 83“”“’ =¢). For fixed

i>j+t,

jef{2,3,...m}yte{0,1,....m—j} and u=(u,,... 4, )er

specify representation

lll
0. _ -1
e Zy > 70, (c = ZupZ” +1]
p=1
as follows:
" (a)=(e"(at)),...

Jt 0 1
€00, ), e (), (0 ),

€00, )8 (0 )08 (a,)) (35)

and define functional o{"" on the set Z;' with the help of
the following formula:

t
VaeZy o*’(a)= Y e"(a)+ D e (e,

iel, (j) i=0

(36)

where

IL(H={1,2,...m}\{j,j+1,...,j+t}.

Specify a set of Boolean vectors F]i"k'rk't) through the
functional o§"*:

lu
FJSZW = {a eh(L,,0...0)[0"(a)< Du, 2”1}, (37)
p=1
where

]u
T Ty, e{1,2,...,2up2p1}, ke{0,1,...,t}.

p=1
Theorem 9. If in the extended nucleus
K(f,8)={a,...a,,} (20, q+s<2m™")

of the Boolean function f:G,—H, with respect to the system
of characters y={x, ,...x; } of the group G, overthe field R,
then, respectively, there are such elements a, 0, u and such
integers

I
u
p-1
h2n ..., >0{r0S2up2 ],

p=1

in the group S, and in the set U; that

a"K(f,,9)=h(L; M)v(Uﬂi"f"”} (38)

i=0

then function f is realized by one generalized neural element
in relation to the system of characters y.

Proving. 1t is given that equality (38) is valid with re-
spect to the elements

aeK"(fx,s),GeSm and u=(u,,....u; ).

Then one can construct a vector w=(w,,...,®,), satis-
fying the condition:

Vxea®K°(f,5),VyeZ \a’K°(f,s)

(x,w)>(y,w). (39)

Define coordinates ®, of the vector w as follows:

— — 2

o, 4 =...=0,, =-2, Oyt = T Oy, =20

u+l Uy iy

=_2/u—1

e ('ou g+ U +1 == ('Ou o+ AU
1772 lu—1 172 lu

p=1

1 1
u u
— p-1 — p-1
wj—ro—[Zulﬁ +1], mj+1—r1—{2up2 +1], ey
p=1
Ly 1 Iy 1
- P = = = p=
o, =1 du,2""+1|, 0., =..=0,=-du,2"" -1
p=1 p=1

The following is obtained from the vector w cons-
ruction:



l'.l
min{(x,w)|x € (L,0...0)} = —Zup 20
p=1

Vke{0,...,t} min{(x,w)|x eF_(:;e,rk,k)}:

J

lu lu
= —Zup 27> _2”,, or-l _{=

p=1 p=1
)< E,0.0)\ P

1\1
Vze{t+1,...,m} max{(x,w)|xeh(L, 0...0)}=—>u 2" ~1.

p=1

Then (39) follows immediately from (38) and, according
to Theorem 7, we can show existence of such a matrix of tol-
erance L, € E,, in which the first g+s rows can be construct-
ed from the elements of the extended nucleus a°K°(f,,s).
Consequently, there exists such an element &€ .S, that

a’K(f9)=L(q)

and the theorem is proved.

Consider synthesis of a neural element with a generalized
threshold function of activation relative to the system of
characters

X =0 = Xogto 12Xy = Aoz oo Xy =Xy -
Let n=10 a,=(0,0,0,0,0,1,1,1,1,1),

G:12345678910
10 9 87 65 432 1)

j=5 1n=1=3,1n=2r=1 r=rn=0
and u=(2,1,1)eU..
Determine 8(5“'3) for an arbitrary vector
a=(0,,...,00)) € Z’,

&5 (a) = (g5 (), &5 (01,) €5 (aty),

3 0 1 2 3 3 3 —
Sgu )(0%)’8;“ )(ogs),gg“ )((XS),E_(SU )(067),8:(3" )(ag),gé“ )(%),gg“ )(am))_

=(0y,0,,20,40,,60,60,,70;,80,90,,90,,).

Construct sequentially
(u,3,3) (u,3,3) (u,2,3) (u1,3)

according to the rule:

*

Fii:rk V= {a eh(L

0...0)[0\" (a)<2:1+1-2+1-2°},

j+k

F**%'={(0,0,0,0,1,0,0,0,0,0),(1,0,0,0,1,0,0,0,0,0),(0,1,0,0,1,0,0,0,0,0),

(1,1,0,0,1,0,0,0,0,0),(0,0,1,0,1,0,0,0,0,0)};

F**'={(0,0,0,0,0,1,0,0,0,0),(1,0,0,0,1,0,0,0,0,0),(0,1,0,0,0,1,0,0,0,0),

(1,1,0,0,0,1,0,0,0,0),(0,0,1,0,0,1,0,0,0,0)};

E**9 ={(0,0,0,0,0,0,1,0,0,0),(1,0,0,0,0,0,1,0,0,0),(0,1,0,0,0,0,1,0,0,0)};

F*'% ={(0,0,0,0,0,0,0,1,0,0)}.
In accordance with Theorem 9,
o, =0,=-1,0,=

-2,w, =—4,

;= m; =-6,m,

S5

=-7,04=-8,
W, =0, =-9.
Thus, if
K(f,,0=/"(1),
then a neural element with a weight vector
w,—aw’ =(-9,-9,-8,-7,-6,6,4,2,1,1)
and threshold [20]
o, =(ax" ,w,)=6
(x=(2,0,0,0,0,0),z is the last row of the matrix of tolerance

Ls) realizes function f(x,,...,x,,) with respect to the system
of characters y in alphabet {0,1}. In the opposite case,

K(f,0=/,'(=1),

the function f(x,,...,x,,) is realized by a neural element
with a vector of structure

[W2 = (979)8v7)6)_6)_4)_2)_1!_1);_5]

relative to the system of characters y in alphabet {0,1}.
Remark. The operation aw of a boolean vector

a=(0,,..00,)
to a real vector
w=(0,..,0,)
is defined as follows:

aw = (-1 0,..(~1)"®,).

5. Discussion of results obtained in the study
of synthesis of generalized neural elements

On the basis of the obtained necessary and
sufficient conditions for realizability of the log-
ic algebra functions by one generalized neural
element in relation to the system of characters
x={ X }, construct an algorithm for syn-
thesis of such neural elements.

Algorithm for the synthesis of generalized
neural elements

Step 1. Let the Boolean function f:G,—H,
and the system of characters x={x, ,....x; } of
the group G, be defined over the field R. S€arch
for nucleus K(f,). If the nucleus exists, then
proceed to step 2 and in the opposite case, make
a conclusion that function f is not realized by



one generalized neural element relative to the system of
characters

xX= {Xqv--wxim}

and the algorithm completes its work.
Step 2. Check the conditions necessary for realizability of
the function / by one generalized neural element relative to

Let

K(f)=/1"®,

& be a unit element of the group

8,52, =(11100001).

the system y (Theorems 3-5). If the conditions of at least one ~ Then
of the theorems are not fulfilled, then the function fis not
realized by a single GNE with respect to the system y and 11100001 00000000
the algorithm completes its work, or, in the opposite case, 11000001 00100000
denote the extended reduced nucleus which satisfies the 11110001 00010000
conditions of all three theorems by
11010001 00110000
K(fx,s)(sgo) K;(fx)= 11101001 a1K§(fx) 00001000
11001001 00101000
and proceed to step 3. 11111001 00011000
Step 3. Based on the reduced nucleus K(f,,5)(s20), 01100001 10000000
construct sequentially the elements of the set of the re-
duced nuclei T(f,.s), apply Theorem 6 to the construct- 01000001 10100000
ed reduced nucleus and verify equality (23). If equali- 10100001 01000000
ty (23) is fulfilled, then, according to Theorem 7, find 00000000
the vector of the structure of the generalized neuron el-
ement with respect to the system of characters y, which 10000000
realizes function f in alphabet {0,1} and the synthesis 01000000
of the GNE is completed. If no reduced nucleus with 11000000
T(f,,s) satisfies equality (23), then check conditions of
Theorems 8 and 9 relative to -, 00100000 =K (S
10100000 x
K(fx’s)(szo)' 01100000
00010000
If 10010000
K(f,5)(s20) 00001000
satisfies conditions of Theorem 8, then the vector of struc-  where

ture of the generalized neuron element that realizes function
/[ relative to the system y in alphabet {0,1} is to be found by
Theorem 5 [23].

If K(/,,5)(s20) satisfies conditions of Theorem 9, then
vector of the GNE structure which realizes function f in
alphabet {0,1} with respect to the system y, must be found in
accordance with this theorem.

If the conditions of any of the three theorems (7, 8, 9)
are not fulfilled, then synthesis of the GNE for realization of
function f with respect to the system y is not successful and
the algorithm completes its work.

Remark 1. If the number of entries to the GNE is not
limited from above (the maximum number of entries for re-
alization of the function f:G,—H> in alphabet {0,1} is 2°-1),
then expand the system y by adding new character(s) of the
groups G, over field R.

Example. Let f:G,—H, be a Boolean function,

1= e A

is a system of characters of the group G, over the field R (n is
a natural integer satisfying the inequality 2°>8) and

7 (1y={(11100001), (11000001), (11110001), (11010001),
(11101001),(11001001),(11111001),
(01100001),(01000001),(10100001)}.

(1t 2345678
4512367 8)

Element ¢ is determined by Theorem 6. The reduced
nucleus K(f,), satisfies conditions of Theorems 3-5 and
equality (23) takes place:

00000000
10000000
01000000
11000000

] 00100000
K=l 10100000 L3 |
01100000
00010000 ] ..
10010000} «(2)

00001000} L(1)

Therefore,

Kf(fx)1 =
=(L,00000) V(L (3)00000) V(L,(2)0000) V(L (1)000)



Denote last rows of the blocks

(L,(3)00000), (L,(2)0000), (L(1)000)
by

z,=(01100000), z, =(10010000), z, =(00001000)
respectively, then vector of the structure of the generalized
neural element in alphabet {0,1} which realizes function

1:G,—H, with nucleus

K(fp)=71"®

in respect to the system of characters y = {X,-1 e X }, will be
found in accordance with Theorem 7:

W =(0,0,,0,,0,,0;,00;,00,);
w, =(0,0,0,);
o=-lo,=0,-1=-2, 0, =0, +0, -1=—-4;
w, =(~1,-2,—4);
w,=(-1-2-4,0,);

(20 w,)= (W) 0, =5

w, =(-1,-2,-4,-5,0,);
(z,,w,)=(z,,W;)= w5 =-6;
w=(-1,-2,-4,-5,-6,0,,0,,0,);
=0, =0, =(z,,w,)-1=-T,
w=(—1,-2,-4,-5,-6,~7,-7,-7);

w =aw’ =
=(1,1,1,0,0,0,0,1)(~5,~6,~1,~2,~4,~7,-7,~7) =
= (5,6,1,~2,~4,~7,~7,7).

The threshold o, is defined as follows:
o, =(az ,w)=13.

If K(f)=/"(1), then the generalized neural element
with a weight vector

w' =(5,6,1,-2,~4,~7,~7,7)

and threshold ®,=13 realizes function f in alphabet {0,1}
with respect to the system of characters

X={Xi1r"-rxl'8 }»

In the opposite case, that is, when

K(H=/"(¢-D,

function f is realized by one generalized neural element in
alphabet {0,1} with a weight vector

w =-w =(-5,-6,-1,2,4,7,7,-7)
and threshold
0, =-0,+1=-12.
The connection between the vectors of structure of the

neural elements which realize the same function in different
alphabets {0,1} and {—1,1}, was established in [20].

6. Conclusions

1. Expansion of functional capabilities of neural elements
by generalization of activation functions provides for a more
efficient use of these elements in the tasks of processing
discrete signals and images. However, in order to success-
fully apply generalized neural elements in the field of com-
pression and transmission of discrete signals, classification
and recognition of discrete images, it is necessary to have
practically suitable methods for checking realizability of the
logic algebra functions on such elements and the methods of
synthesis of these elements with a large number of entries.

2. Based on the results presented in the paper on the
structure of nuclei and extended nuclei of Boolean functions
with respect to the system of characters and properties of the
matrices of tolerance, the following was established:

—if there is a nucleus relative to a specified system of
characters for a Boolean function, then the function is real-
ized by one generalized neural element with respect to the
system of characters if and only if the nucleus or extended
nucleus of the function admits representation by the matri-
ces of tolerance;

— efficient conditions are required for checking realiz-
ability of Boolean functions by one generalized neural ele-
ment in relation to the system of characters;

— conditions sufficient for realizability of the logic alge-
bra functions by one generalized neural element in respect to
the system of characters on the basis of which an algorithm
of synthesis of integer-valued generalized neural elements
with a large number of entries has been developed.

3. The results obtained in the work can be used in work-
ing out effective methods for synthesizing neural network
schemes from integer-valued generelized neural elements
with a large number of entries for encoding, classification
and recognition of discrete signals and images.
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