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1. Introduction

Variational principles and optical-mechanical analogy
were essential for the development of quantum mechanics.
The analogy of motion of the mechanical conservative sys-
tems and the propagation of light rays in an optically het-
erogeneous medium was first paid attention to in paper [1].
Thus, from the stationary Hamilton-Jacobi equation

H(aﬂ,qJ= E,
9q

recorded for a single particle:

2(?{;’) =9m(E-U), )

where W(q) is the Hamilton’s characteristic function, U(g) is
the potential energy of a particle, E is the total energy of a
particle, m is the mass of a particle; and the eikonal equation
that describes the propagation of a light ray
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where @(g) is a function of the eikonal — a light wave phase,
A is the light wavelength, it follows that these equations are
similar in the general form.

L. de Broglie shed a new light on the optical-mechanical
analogy [2—4]. He considered the correspondence between a
wave and a particle based on equations (1) and (2), and on
the basis of variational principles by Maupertuis and Fer-
mat. It is the very optical-mechanical analogy at the level
of geometrical optics that allowed L. de Broglie to establish
wave properties of the particle. Thus, if one puts ¢=W /A,
in (2), then we obtain from (1) and (2)

1 2m(E-U) p*
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where £ is the Planck’s constant.

Optical-mechanical analogy and the ratio of Lou-
is de Broglie (3) were consequently employed by Schroding-
er to formulate a wave equation [5].

Experimental achievements in the study of the behavior
of separate microscopic systems revive in turn sustainable
interest in verifying the basic provisions of quantum theory
and stimulate a deeper rethinking of its physical principles,
a role of information in the theoretical description of the
micro-particle behavior [6, 7].

2. Literature review and problem statement

Optical-mechanical analogy is, first of all, a view of the
nature of light. Optical-mechanical analogy has remained




relevant up to now [8—10]. Study [8] shows the existence of
connection between the trajectories of particles under the ac-
tion of nonholonomic constraint, and the trajectories of light
rays with a variable refractive index. Article [9] provides a
proof of the existence of a new optical-mechanical analogy
between the equation of rotational motion of the body in
mechanics (taking into account the principle of relativity)
and the first pair of Maxwell’s equations. The Hamilton’s
optical-mechanical analogy between a material’s particle
trajectory in potential fields and the trajectory of light rays
in media with a continuously changeable refractive index has
played an important role in the substantiation of Schréding-
er’s wave mechanics [10]. In this case, based on the existing
variational principles, this analogy is drawn only at the level
of geometrical optics. In the given paper, the motion of an
object is explored using a V-function method, which consists
of a local variational principle (LVP), new statement of the
direct and inverse problems of dynamics [11, 12].

In some problems, light manifests itself as a particle.
In other problems — as a wave. In other words, a dualism
of the wave and the particle is detected. The same dualism
manifests itself also for the particles of matter. Continuing
attempts to comprehend paradoxical manifestations of a
corpuscular-wave dualism in the motion of the electron (as
well as other micro-particles) do encourage undertaking new
research [13—16].

This makes it possible to argue about theoretical inter-
est in the approach based on corpuscular-wave monism to
explaining the nature of the particles (the object). In partic-
ular, a theory being developed can apply the description of
physical reality where the existence of the particle trajectory
is taken into account, which reflects the fact of the existence
of the particle, while it is also accepted that the motion of a
particle is determined by a physical wave V(x,z).

3. Research goal and objectives

The goal of present work is to demonstrate the capabili-
ties of a V-function method to study the motion of an object.

To accomplish the goal, the following tasks have been set:

—to perform optical-mechanical analogy at the level of
wave optics based on the local variational principle, taking
into account the wave and the trajectory motion of the object;

— to conduct research into the properties of wave nature
of the electron motion in the hydrogen-like atom as a solu-
tion to the direct problem of dynamics;

— to devise a technique for finding the ultimate solution
to the stationary wave equation for a hydrogen-like atom.

4. Research materials and methods

We shall define the content of a V-function method. Let
the trajectory motion of an object is assigned by a system of
differential equations from classical physics:
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where the vector of phase particle coordinates x(t)=
=(%,,%,,..,x,)" is assigned in n-dimensional Euclidean space
(x € R"), tis the time.

Along with a system of equations (4), we shall also in-
troduce a wave function V(x,t). The rate of its change for the
system being studied (4) will be determined by expression

d dy ., 0
dtV 8tV+ Vf

Consider an isochronous variation of the rate in the wave
function change

d 9 d sy/T T
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here
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We accept that at a variation in the rate of change in
wave function 8(%V), an object from a certain initial state

passes into the state that is different by a new spatial coor-
dinate x+8x. Such a transition will be referred to as a wave
transition of the object, at which a magnitude 8V assigns
the possible wave transition from the initial state to the new
state, while 8x determines trajectory variations. When im-
plementing a wave transition, the spatial variation takes the
form of displacement &x = dx = xdt, implemented in space.

Let us formulate an LV principle: out of all the possible
transitions to a new state, the only one, which is actually car-
ried out, is the one at which in each moment a rate of change
in the wave function V(x,t) takes a stationary value
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By assuming the feasibility of (5), we also accept that a
wave function satisfies additional condition for a full varia-
tion in the change rate of wave function V(x,t):

A(%V)z 0, (6)

where A(.)= 8(.)+%(.)At.

Once we have classical equations (4) and conditions (5),
(6), we shall derive a wave equation for V(x,t), taking into ac-
count the implementation of wave transition (8x = dx = xdt)

in (5) and (6):
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where V(x,t) is the piecewise continuous, finite, single-val-
ued function, W=[9> V(0] s the function matrix.
Equation (7) is a necessary and sufficient condition for the
feasibility of (6). We shall demonstrate that there is equality
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According to the method of a V-function, particle motion
occurs in such a manner that at each point in time, the parti-
cle’s velocity is co-directed with the wave function gradient,
that is

9 e |0 vl
gV x—|axV||x|.

Hence, we obtain oV /dx =k,(x)a. Further, we assume
that a velocity field in a three-dimensional space coincides
with the field gradient corresponding to it, which occurs at
k,(x)=k,, and, accordingly, we obtain equality

oV /dx =k, )

In the case when a wave transition is implemented, rela-
tion (5) takes the form
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Then, taking into account (9) and (10), the equality (8)
should hold, that is,
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Consequently, equation (7), considering (8), takes the form

92V — Wi =0. 1)

Moreover, if the following condition is satisfied

=0, 25 =T,
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equation (11), considering (9), takes the form:
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where

n n 2
9= =x"% and V' = 28—2.
i=1 7 0x;
Equations (4) and (12) describe trajectory and wave
motion of the particle being studied. In order to find a solu-
tion to this system of equations, it is required to know the
boundary conditions. Note that we shall use as the boundary
conditions for (12) the properties of a wave on the trajectory
of a particle. The proposed approach to the description of
particle behavior includes a system from the trajectory equa-
tion (4) and the wave equation (12). Further, we shall find
the boundary conditions for wave V(x, t) on the trajectory
of a particle.

Condition 1.

We obtain from equality (9) a boundary condition for
wave in point x =ux,, of the trajectory of a particle

AV /x| =k, . (13)

x=xy

Condition 2.
Assuming the implementation of wave transition in (5),
we shall obtain

O yTiz
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Employing condition (14), for a full variation (6), we in
turn obtain equality
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applying which we find, respectively, condition 2 for wave
behavior on the trajectory of a particle

2
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=k, (15)
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where &, are some constants.

Condition 3.

It follows from the condition of connectedness between a
wave and a trajectory (wave amplitude V(x, £) is equal to zero in
the point of particle position with coordinate x = x,,in time t)

V(x=x,,t)=V(x,t=0)=0. (16)

Direct problem of dynamics in the method of V-function
is stated as follows:

The differential equations are given that describe the
motion of an object (4).

It is required to determine wave function V(x,t) that
satisfies equation (12). For the case =19 (n=1), we obtain
a solution to equation (12) considering (13)—(16) in the
following form:

Vix,t)= o] a7

Inverse problem of dynamics is stated as follows:

For a given wave function V(x,t), which satisfies equation
(12), it is required to derive differential equations of the mo-
tion of an object (4).

At the given wave function, a solution to the inverse
problem of dynamics immediately follows from (9):

v
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For the one-dimensional case (n=17), equation (11) takes
the form:

V(x,t) V(xt) .,
- =0. 19
or o (19
Assume that the wave function is given in the form of a
plane wave equation (17), which propagates in the motion
direction of the object. Then (17) will satisfy (19) if & ="0.



In this case, it follows from equality (15), where the wave
function is given in the form (17), that

AV («x,t)
ot
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The constant in the right part (20) is a real number.
Therefore, in order to satisfy condition (20), the phase should
take the values:

® x T B
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Since x=9= %—t =C, equality (21) takes the form:
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that is, in solution (17), natural frequencies can take only cer-
tain discrete values. Then (20), considering (21) and (22), will
take the form:

Am:A%(H 2n) = const. (23)

This means that equality (22) also takes only discrete
values.
From equality (9), considering (17), it follows that

Wae) o o) e gy (24)
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Hence, considering (20), we obtain

AV (x,0) ,

———=0=k,0" =const. (25)
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Equality (25) is nothing else than the fulfillment of (10)
at n=1.

5. Results of studies into particle motion

5. 1. Continuation of the optical-mechanical analogy
Let us consider the trajectory motion of a particle, which

satisfies equation (18) x= k%—v. Trajectory motion of the
x
particle, as follows from (18), is matched with the wave mo-

tion, which satisfies wave equation (19):

AV (x,t) _( LV )2 IV _,

26
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Function (17) V(x,t) = Ae 0™ will satisfy equation (26),
if equality (21) holds. In this case, we obtain

ko 132
|4l=

Let here k,=m be the mass of the particle. Then am-
plitude |A| takes dimensionality of the action. If we accept

A= Zi =h, his the Planck’s constant, then the rule of energy
T
quantization follows from (23), similar to that by Schréding-

er in the case of Planck oscillator. In this case, we obtain
from (24) considering (21)
h
10 _ mo.
)
By employing the results obtained, it is possible to draw
such a correspondence between the wave and the particle [9]

27)
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In this case, the wave and trajectory measurements can
be described by a single wave function:

1( ho 1
Vix,t)=Ae o) _ g5 _pgrimos, (29)

In relations (28), principal is the equality between the
wave phase velocity and the particle speed, while in quan-
tum mechanics, the particle’s speed equals the group ve-
locity of waves by L.de Broglie. The energy quantization
condition (23) is produced naturally as a result of solving the
inverse problem. According to the second relation in (28),
energy is transferred by a particle. In turn, according to the
third relation in (28), the pulse of a particle determines wave-
length A, which coincides with the known formula by Louis
de Broglie. In the physical sense, wave V(x,t) characterizes
properties of the activity that manifests itself in the motion of
a particle. Thus, the wave is connected by its node with the lo-
cation of the particle and thus guides it, however, the particle
(trajectory) generates a wave that propagates with it.

In addition, equation (26) has a solution at &, =m — 0. In
this case, we obtain a wave function in the form of a mono-
chromatic flat wave without the particle, which propagates
at a given speed and with a given frequency. This can explain
the interference pattern when the particle (photon) passes
through two slits.

3. 2. Motion of the electron in a hydrogen-like atom

Let us consider the motion of an object (a particle) in a
3-dimensional potential force field in the Cartesian coordi-
nate system. Let the trajectory equations of the object (the
particle) (4) allow the first integral of motion in the form of
the law of conservation of energy of a particle, that is,

m(i? + i +3%)

2 +U(x,y,2)=E,

(30)

where m is the mass of a particle, E is the total energy of
a particle, U is the potential energy of a particle. Then the
object motion (of the particle) is fully described by the fol-
lowing system of equations (30) and (12):

2
m;S +U=E,
) (31)
?)T‘Z/_ ¥’V =0,
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where Vi=— J 8 J 9=

s+——+—is the Laplace operator,
PRCP WP place op
=%+ 4 + 2% is the square of the particle velocity. Hence, the
second equation, considering the first one, takes the form:
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We shall apply a method of separation of variables in
equation (32) (V =X(x,y,2)T(t)),

d*T(t)
&t _AE-DV'X(x9.2)_ ) 53
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Consequently, we obtain the following stationary equation

2E=D) gey s oix =0,
m

(34)

As is known, potential energy of a hydrogen-like atom
is equal to

U(ry=-Zé*|r. (35)
Then equation (34), considering (35), takes the form

(—Bg +9)AX+0)2X -0, (36)
r

where

In equation (36), we shall proceed to a spherical coordi-
nate system

()

2
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+0’X=0.
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is the Laplace operator in a spherical coordinate system.
We shall search only for the spherically symmetric solu-
tions. Then X =R(r),

1d(r d)_
“Pdr\ ar)”

dr dr2 ar*  rdr

and equation (37) takes the form

td(,dRY,
(022 ). o

We shall replace R =% in equation (38) to obtain
r

(38)

=0. (39)

Represent equation (39) in the following form

d*u ko
L @
0
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The solution to be obtained to the direct problem of
dynamics for equation (40) must satisfy natural condition
u(r=1,)=0, (here r,=o0/p;=-Z¢"/E=Ze" /|E|), which
corresponds to the implementation of boundary conditions
(16), at which amplitude of the wave becomes zero at r =7,
where, accordingly, as a solution to the inverse problem, the
particle acquires a trajectory. Find the asymptotic solution
to equation (40) at 7 — eo.

d*u

F—ku 0.

(41)

We shall record a general solution to equation (41) in
the form

u,=u (ry+u (ry=e f (r)+e" f.(r).
Then
=th'e™ L(r)+ e L),
W= (fAr)£ 2k, /() + k2 f(r))

and equation (40) takes the form

£ 022k f 4P =0, (42)
where

B, =klo /Bl =1Ze'w'm, ) E?,

r=o0/B,=-Z¢’ /E=Z¢" / |E|. (43)

Solution to equation (42) will be searched for in the form
of the following power series

L= al (=), (44)

where a particle trajectory actually becomes localized on the
surface of radius 7 =#,. Equation (42) after the given substi-
tution of (44) takes the form
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Equality (45) is identically fulfilled only when r=17, or
when all coefficients of the obtained series are equal to zero,
that is,

(n+)na’s) ¥ 2knal” +B,al” =0.

0, while coefficients a'® sat-

n>1

Hence, it follows that a, =
isfy recurrent relation

a® = +2kn—B, a®

= (16)

Since, based on the inverse problem of dynamics, we
search for the trajectory of a particle that holds provided
B,=2kn (B,=1Ze’w’m,/E’,

2
k=——— B,>0,k >0). 47)

The given condition is satisfied only when series

L= a’

is discontinued, that is, al” =0 at m>n+1, which leads to
the following solution

k n r n m
u,,(r)=Ce" ’2m21afn*) (TM —r) ,

where C is the constant.
Considering equality (47) and

(48)
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Since, from the results of optical-mechanical analogy (28)
we have ®’= - ) then we shall obtain, from relation
(49), the energy value of the n-th state of the particle (a rule
of energy quantization)

_Z ‘e'm, 1
n 2h2 n2 )

(50)

which exactly coincides with the solution obtained in the
Bohr model [17], or based on the stationary Schrédinger
equation in paper [5].

We shall record a radius of the n-th state of the particles
considering (50)

zZe*  2n*n?
r, =——= . 51
0 E, Zezme GD

Next, we shall search for the ultimate solution to equation
(40), because solution (48) approaches infinity u(r)— oo at
r — 0. For this purpose, consider a general solution

u=u_(r)y+u, (ry=e " f )+ f(r)=
—ko el - m ko7 n m
Cie™™ zm:1afn )(Vo,n —r) +C,e™ zmdafj)(rw —r) )

Here solution u_(7) is considered also in the form of a
power series, but a series, as it follows from relation (46), is
not discontinued.

It follows from (46) that for sufficiently large values of #,
a relation of two coefficients of series (44) takes the form
(=
ntl _

(=

a +2k,

n+tl

a

But it is the very relationship that exists between two
adjacent terms of a series

no.n n+l  n+l
oty _ 1_"_Zk r+m+(2k0) r +(2k0) r ,
1 n! (n+1)!
(2k)"'n! 2k,
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Therefore, at 7 — o, there are asymptotics w, () — P
which is why, in order u_ — 0, the ultimate solution will be
sought for in the form of u=u_(r)—u,(r). For this purpose,
we shall consider the form that functions u_,(r) and u,,(r)
take at m=1, 2, 3..n.

Because, at m=7, functions u_(7),u,(r) take the follow-
ing form:
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where equality (47) is taken into account, which takes the
form B,, =2k, and the recurrent relationship (46) for a’
in the following form

u 7’01_7’)
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" (m=1)! v
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Hence, it is clear that if a”=a,=a"¢ , then

u (ry=u_(r).
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If a® =0, =a"e " then u,(r)=u_,(r).
Let m=n, then B,, =2nk,,,
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If a® =0, =a"¢ " then u, (r)=u_,(r). Hence, it
follows that the solutions u_(7), u,(r) are linearly dependent.
Let us find a second linearly independent solution.

u”+ p (N’ + py(Nu=f(r).

u, (r) and u_(r) — are the solutions to this equation, then

u (r) u(r)
u (r) ' (r)

y (r)(m(r)u:(r)—u_(r>u:<r)) 2 (r)( u(r)) T

u:(r) u (r)

=u (Nu’ (r)=u_(ru(r).

’ -[pryar
J-(u(r)) drsze 5 dr.
u,(r) w:(r)

Since p,(r)=0, then

u_(r) CI e

= r.
u,(r) ul(r)

Therefore, the second linearly independent solution will
take the form:

u_(r)= Cu+(r)J' %dr



and, considering solution (48), we shall obtain a solution
that falls exponentially with distance u_,(r >eo)~e

that is,
u_,(r)=
2
= Cek“”Z‘:L:1 al? (royn - r)m_[ ¢

through point 7,

this

,
we shall obtain solutions to R

and

(% (=)

Note that wave u_,(r) changes sign during transition r
which, in accordance with conditions (3)
and (4), indicates the existence of a particle’s trajectory at

n’

u_,

point. Since R_, =

—n?

At n=1, u_,(r) is equal to:

2k 47
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Considering that
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We shall replace:

L = 2’ ) 6—42

T4 su (r)=e -(1—2)Iﬁdz-
dr=r,dz (1-2)
Therefore,

_ u (1) _

R,
’ r r

At n=2, u_,(r) is equal to:

uf,z(r) =
=l ((rw - r) —ky, (rov2 - r)2 ) X

~2ko o7
xJ

: dr,
(o= r) (1= ks (o 7))

2

, then, in accordance with (52),
(n=1,2,3..) (Fig. 1-3).
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At n=3, u_,(r) is equal to:

u_(r)= e x
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Therefore,

_us() _ e (1-2)(6-722(1-2) +144(1- 2

R, X
r r
—12¢
X . ¢ —-dt.
(1)’ (6-72(1-1)+ 144(1-1))
We shall construct charts of functions R_,, using the

Maple programming complex.

The charts show that starting from second lower state,
amplitude of the wave crosses zero more than once, but only
at r=r,, the derivative of wave 2V, (r,t) changes sign in

this point, which according to (13), indicates the existence
of the electron trajectory only on the surface with radius 7,

0,n°
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Fig. 2. Stationary solution for a wave of the particle
(electron) to second lower stationary state (n=2)
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Fig. 3. Stationary solution for a wave of the particle
(electron) to third lower stationary state (n=3)

The properties of the trajectory and wave V, (r,t), de-
scribed above, indicate a different spatial arrangement of
the electron in the hydrogen atom compared to the known
pattern, described by the Schrédinger’s wave function.

6. Discussion of results of the conducted research

The research undertaken indicates that the desire
of L.de Broglie to overcome a wave-particle dualism

through the concept of wave-pilot is substantiated here
via a continuation of the optical-mechanical analogy,
which is solved at the level of wave optics. In this case, the
wave function V(x, t) itself is not only connected to the
motion of the particle in some way, but directly expresses
the motion itself, which is always of a wave nature, be it
light, or any other object.

When modeling an electron motion in the Coulomb
field, the V-function method makes it possible to es-
tablish a rule of energy quantization of a hydrogen-like
atom, which fully coincides with the classical results by
Schrodinger and Bohr. In this case, discreteness of energy
arises from satisfying the conditions following from the
V-function method. The trajectory and the electron wave
are interconnected, this relation is described by the meth-
od of V-function based on the local variational principle
and solution to the direct and inverse problems of dynam-
ics. According to the given approach, stationary behavior
of the electron on the n-th stable state is described by
wave R, which subsides exponentially to zero at r— o
In this case, the amplitude of the wave passes zero on the
sphere with a Bohr radius r,,, which means the existence
of the electron trajectory on the sphere of the given radius.

A benefit of the given method is that when simulating
the motion of an object, one takes into account its wave
motion and the trajectory motion at the same time. Reli-
ability of the results is achieved by confirming the known
results of quantum mechanics. In this case, however, the
inevitability should be noted of the emergence of diffi-
culties for experimental confirmation of the new results.
It should also be noted that the trajectory motion of an
object is described by the method of V-function only with
a system of stationary differential equations, which can be
regarded a constraint of the performed research.

7. Conclusions

1. Based on the method of V-function, we have drawn
an optical-mechanical analogy, which thus gained a new
continuation. Wave function V(x, t) directly expresses the
motion itself, which is always of a wave nature, be it light,
or any other object.

2. We obtained a solution to the direct and inverse
problems of dynamics in a new statement for a hydro-
gen-like atom. The method of V-function makes it pos-
sible to establish a rule for the energy quantization of a
hydrogen-like atom, which fully coincides with the clas-
sical results.

3. The ultimate solution to the stationary wave equa-
tion for a hydrogen-like atom was obtained. Stationary
behavior of the electron is described by wave R,, subsid-
ing exponentially to zero at unlimited distance from the
nucleus, and whose amplitude passes through zero on the
sphere with a Bohr radius.
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