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Запропоновано метод кінематичного ана-
лізу механізмів хлoпкопереробних машин, в 
тому числі механічного бунтоукладчика, 
та розроблено алгоритм його комп’ютер-
ної реалізації. Метод дозволяє автомати-
зувати процес отримання і рішення рівнян-
ня для визначення кінематичних параметрів 
усіх елементів механізму при заданому зако-
ні руху ведучої ланки. Експериментальним 
шляхом вивчена можливість формування 
верхньої частини бунту з необхідною щільніс
тю бавовни, що забезпечує стійкість формо-
ваного бунту
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ни, форма бунту, верхня частина бунту, кула-
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Предложен метод кинематического ана-
лиза механизмов хлoпкоперерабатывающих  
машин, в том числе механического бунто
укладчика, и разработан алгоритм его ком-
пьютерной реализации. Метод позволяет  
автоматизировать процесс получения и  ре
шения уравнения для определения кинемати-
ческих параметров всех элементов механиз-
ма при заданном законе движения ведущего 
звена. Экспериментальным путем изучена 
возможность формирования верхней части 
бунта с необходимой плотностью хлопка, 
что обеспечивает устойчивость формируе-
мого бунта
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1. Introduction

Cam-lever mechanisms are widely used in the drives of 
cotton-pressing and drying-cleaning mechanisms, etc. [1]. 
This is a mechanism for the formation of a cotton bundle at 
the cotton ginning plants. The shape of a bundle largely af-
fects quality storage of raw cotton [2, 3]. A bundle formation 
process is extremely complicated, consisting of a number of 
labor-intensive operations.

Issues in the search for rational techniques and devices 
for the mechanized laying of raw cotton were addressed by 
many scientific and industrial organizations of Azerbaijan.

Thus, a rectangular frame was manufactured and tested, 
made of the angular steel 40 × 40, for laying cotton. The den-
sity of cotton in the formed bundle, however, did not reach 
the required level. As a result, upon completion of laying the 
cotton weighing 135 tons, the bundle collapsed at a height of 
3.0–3.2 m [4]. 

Harvesting raw cotton, depending on weather condi-
tions, lasts for a few weeks. During favorable harvesting, 
the procuring points may daily receive raw cotton in a 

volume equal to 3–4 to 7–8 % of annual harvest. About 
20–30 % of harvested raw cotton are processed at cotton 
ginning plants over a harvesting season, but the bulk of 
the raw cotton still has to be laid for long-term storage, 
in order to process it in the coming months. That is why 
stability of a bundle is of great importance for high-quality 
cotton storage [5].

2. Literature review and problem statement

Tashkent State Specialized Design Bureau (TGSKB, 
Republic of Uzbekistan) developed and tested a metal frame 
to form a round bundle with a diameter of 13.0 m. However, 
when completing the bundle, two upper tiers did not resist 
lateral pressures, which resulted in the destruction of the 
frame and collapse of the bundle [6]. 

Reinforcement of the bundle of raw cotton was pro-
posed by the Central Scientific-Research Institute of Cot-
ton Industry (CNIIHProm, Republic of Uzbekistan). Tests 
demonstrated that reinforcement reduces the likelihood of 
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a bundle collapse but it increases labor intensity due to the 
introduction of additional operations. In this case, one should 
also consider sufficient enough complexity of the process of 
bundle formation [7].

Article [8] describes results of the studies conducted 
under industrial conditions. Underlying them was the im-
plementation of an idea about compressing raw cotton for 
the purpose to mechanize the bundling process. However, 
after a three-month storing, bottom piles deformed and the 
bundle collapsed. The HASKI modular method for storing 
cotton also failed because its application under conditions of 
Azerbaijan is impossible due to the lack of specialized sites 
and specifics in the procurement conditions.

Experiments confirmed that the creation of a mechanism 
for bundling cotton is only possible while combining mecha
nical distribution and compression of cotton. In order to solve 
this task, it is a promising mechanism to form the upper part 
of a bundle using a metal shield. The mechanism performs 
simultaneously the work of a sealant and renders shape to the 
upper part of the bundle. Given that the shape affects stabi
lity and storage of the bundle of raw cotton, employing the 
cam-lever mechanisms for the drive of a mechanical bundling  
press is feasible.

A confirmation of the expediency of using exactly the 
cam-lever mechanisms is theoretical interest in this type of 
mechanisms from different researchers [9, 10] and its uti-
lization in the applied directions [11, 12]. In particular, as 
far as theoretical studies are concerned, it is interesting to 
note that there is a significant number of cam mechanisms 
that can be applied to ensure an accurate trajectory, or to 
direct the body through the precisely-defined infinite posi-
tions [9]. The authors of the given work argue that by using 
the Gruebler’s mobility criterion, it is possible to perform  
a structural synthesis in order to obtain several mechanisms 
of cam connection. In this case, the proposed synthesis 
method employs a method of the cycle complex closure 
and the envelope theory to find the axial line and contact 
points of the track. Paper [10] proposed an adjustable con-
stant force mechanism (ACFM), which consists mainly of  
a linear spring and a cam mechanism for passive control 
over the contact force. It was noted that the proposed mo
del of ACFM is simple and accurate because, in particular, 
it lacks complex flexible elements. Ensuring precise trajec-
tories in a combination with achieving the specified ope
rational indicators depending on the purpose of a machine 
predetermines scientific and practical 
interest towards the application of 
a cam-lever mechanism in complex 
technological processes. The latter 
include, in particular, the process of 
forming the upper part of a bundle 
by mechanical raw cotton bundling  
presses.

3. Research goal and  
objectives

The goal of present work is to 
study the process of forming the up-
per part of abundle. This will make it 
possible to manufacture a high-quality 
raw cotton bundle using mechanical 
bundling presses.

To accomplish the goal, the following tasks have been set:
– to define a method for kinematic analysis of a cam- 

lever mechanism, which is used in the drives of a mechanical 
raw cotton bundling press, and to explore the possibility 
of its application to form the upper part of a raw cotton 
bundle;

– to examine raw cotton density depending on time and 
height of the bundle;

– to investigate the effect of bundle density on the adhe-
sion between wastes and cotton and the influence of waste 
adhesion on the ginning effect.

4. Results of research into the process of mechanical 
formation of a raw cotton upper bundle

When running a kinematic analysis of cam-lever mecha
nisms, a traditional method of constructing a replacement 
mechanism, as well as the motion reversal method, are not 
applicable for a number of reasons to employ a computer. 
We shall consider using an automated method of kinematic 
analysis of flat lever mechanisms based on the state equa-
tions for a kinematic analysis of the cam-lever mechanism of  
a bundling press whose kinematic schematic is shown in Fig. 1.

Information on the structure of the mechanism is entered 
into the software in the form of specialized characteristic 
arrays, for example, n = 5 is the number of movable links; k = 6 
is the number of kinematic pairs (hereafter referred to as 
nodes); T(2,n) is the topology matrix.

Link of the mechanism can be of variable length (rocking 
mechanisms, mechanisms with sliders) [13]. In this case, this 
is the first link that represents a radius-vector of the theo-
retical cam profile. The variation of links length is described 
by array L(n) whose elements are l1 1=  if the i-th link is of 
variable length, and l1 0=  at a constant length of this link. In 
addition, we introduce numerical values for the coordinates 
of the fixed nodes, links length, as well as motion parameters 
of the cam, which is the leading link. The law of motion of 
a cam-lever mechanism is determined by the cam profile, 
which is assigned in the form of a tabular function of the  
cam’s radius-vector depending on the angle of its turning. 
Such a function is introduced in the form of array R(N,2). 
In this case, R i i,1( ) = ϕ  is the cam’s turning angle in the  
i-th position, while R(i,2) is the corresponding value of ra
dius-vector of the theoretical cam profile.
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Fig. 1. Kinematic schematic of a cam-lever mechanism
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Equation of state of the mechanism positions takes the 
form (1) [14].

Y = AZ,	 (1)

where Y(2n) is the vector-column that contains projection 
components of the links length:

y l y l i ni
i i

i
i i

2 1 2 1 2−
( ) ( ) ( ) ( )= = = …cos ; sin ; , , ., ;ϕ ϕ

Z(2k) is the vector-column that contains coordinates of the 
mechanism nodes:

z x z y j kj j j j2 1 2 1 2− = = = …; ; , , , ;

A(2n,2k) is the matrix whose non-zero elements take values 
under condition when p i= −2 1 and q j= −2 1, where i and j  
is the number of link and node number, respectively, apq = −1 
at j t i= 2 , in all other cases a t tpq i= 0 1 2( )and  are the ele-
ments of a topology matrix (T).

Equation of position state (1) contains unknowns of 
various forms, which are the angles of link orientation and 
coordinates of the movable nodes. Solving the equation of 
state involves two stages, at each of them we shall determine 
the unknowns of one of the specified form. 

Let k be the total number of mechanism nodes and ko is 
the number of fixed nodes. Then k k ko1 = −  is the number of 
movable nodes. Reduce (1) to the form

E Y A Z A Z

E Y A Z A Z
o

o

1 11 12 1

2 21 22 1

= +
= +





,

,
	 (2)

where Z ko o( )2  is the vector-column of known coordinates of 
the fixed nodes; Z ko1 2( )  is the vector-column of unknown 
coordinates of the fixed nodes;

A n k k A k A n k ko22 1 1 12 1 21 12 2 2 2 2 2 2−( ) ( ) −( ), , , ,,

A n k k22 1 12 2 2−( ),  are the matrices derived from А(2n,2k); 
E k n1 2 2( ),,  E n k n2 12 2 2−( ),  are the singular transition matrices.

The algorithm of a matrix equation system (2) is con-
structed under condition of a square and not a special ma-
trix A k k12 1 12 2( ), , for which one can find an inverse matrix A

12 1− .
Representing vector-column Z1 from the first equation 

of system (2):

Z A E Y A A Zo1 12
1

1 12
1

11= −− − 	 (3)

and substituting it in the second equation, we obtain

CY = D,	 (4)

where c E A A E= − −( );2 22 12
1

1  D A A A A Z= − −( ) .21 22 12
1

11 0

Matrix equation (4) is a system of equations of the pro-
jections of vector contours of the mechanism’s kinematic 
circuit. It is obvious that obtaining it is connected with the 
operations on matrices and can be performed by computer. 
For a bundle of the forming mechanism, a system of non- 
linear transcendental equations (4) takes the form
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
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	 (5)

Solving this system, we find ϕ ϕ ϕ ϕ ϕ1 2 3 4 5( ) ( ) ( ) ( ) ( ), , , , .  Once 
we know components of vector Y, we determine, according  
to (3), coordinates of the movable nodes. 

Equation of velocity states, derived from (1) by the 
differentiation in time, after transforms, leads to a system of 
linear algebraic equations of the form

B A Vo= , 	 (6)

where B(2n) is the vector-column of free terms; V(2n) is the 
vector-column of unknown velocities; A n no 2 2,( )  is the ma-
trix obtained from A(1).

For the given mechanism (Fig. 1), the terms of system of 
equations (6)

B lT =  
( ) ( ) ( )1 1 1 0 0 0 0 0 0 0 0cos ,sin , , , , , , , , ,ϕ ϕ 	 (7)

V x y x x yT =  
( ) ( ) ( ) ( )

2 2 4 5 5
1 2 4 5, , , , , , , ,, w w w w

where l 1( )  is the time derivative (or the cam turning angle) of 
function of radius-vector R(N,2); x yj j,  are the components 
of linear velocities of the movable nodes; w i( )  are the angular 
velocities of the mechanism’s links. 

Equation of acceleration state is derived from the diffe
rentiation in time of the velocity state equation and, in this 
case, is written in the form

B A Wo1 = , 	 (8)

where B b b b b bT
i i n1 1 2 2 1 2 2= … … −, , , , , , :

b l l l1
1 1 1 2 1 1 1 1 12= − − +( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )cos ( ) sin cos ;ϕ w ϕ w ϕ

b l l l2
1 1 1 2 1 1 1 1 12= − + +( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )sin ( ) cos sin ;ϕ w ϕ w ϕ

b li
i i i

2 1
2

−
( ) ( ) ( )= − cos ( ) ;w

 x yj j,  are the components of linear acceleration of the  
j-th node; k i( )  is the angular acceleration of the i-th link.

Matrix Ao  in (8) takes the form (7), B VT T,  in equa-
tion (7) and BT

1  and W T
1  in equation (8) are the transposed 

vector-columns.
Thus, the velocities and accelerations of all elements of 

the cam-lever mechanism is determined by solving the sys-
tems of linear algebraic equations (6) and (8) in line with the 
standard program. 

Numerical simulation was employed to calculate a sloped 
shield that forms the upper part of a bundle. Kinematical 
parameters of the sloped shield (link (5), Fig. 1) for a turning 
angle from 0 to 160° are shown on chart (Fig. 2).

After conducting theoretical studies, we experimentally 
formed a bundle and determined the raw cotton density de-
pending on the height of the bundle and storage time of the 
raw cotton. 

For the raw cotton, selection S3038, grade 1, harvested 
manually, volumetric mass is 65 kg per cub. m., for grade 4 – 
60 kg per cub. m. Volumetric mass of the raw cotton pressed 
in bundles at the lower layers after a 5-month storage, 
for first varieties, is 255 kg per cub. m., for low grades – 
220 kg per cub. m. When compressing the raw cotton, the 
force of its adhesion with wastes increases, which adverse-
ly affects effectiveness of its ginning in the technological  
process.
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Fig. 2. Kinematic parameters of a sloped shield

Given the fact that the influence of a volumetric mass 
of raw cotton on the effectiveness of its ginning by different 
types of purifiers was not investigated, further study was 
aimed at determining the volumetric mass of raw cotton by 
the stages of technological process at a cotton plant and its 
effect on the ginning efficiency. 

As is known, all the cotton cleaners for removing large 
weed impurities, applied industrially, contain one, two or 
more serrated sections depending on the type of a ginner, 
for example, the ginners 1HP (RH-1), CH-3M2 «Mehnat», 
UHK. The way these sections work ultimately determines 
the quality of ginning raw cotton, as well as fiber. That is why 
improving the raw cotton ginning depends primarily on the 
optimization of operation of the serrated section.

The serrated sections currently in use in the cotton indus-
try employ serrated drums of a 480-mm diameter, which ro-
tate at a linear speed of 7–7.5 m/s. The grates that are applied 
as working bodies for separating large weed inpurities and raw 
cotton (valves, partd of stalks, etc.) consist of circular 20-mm 
diameter grates, installed with a gap of 40 mm between them, 
and a gap within 15÷18 mm from the serrated drum. 

There are installed rubbing brushes at the beginning of 
the grates for levelling the fed cotton on a serrated drum and 
fixing the removed parts on the teeth of the serrated gear.

The basic parameters that influence efficiency of the 
ginning by a serrated section are a diameter of the serrated 
drum, its circumferential speed, type of grates, and the gaps 
between them. Diameter of the serrated drum and the cir-
cumferential speed were investigated in a wide range at the 
end of 2012 on the raw cotton of different industrial and se-
lection varieties, which is why a reconsideration of these pa-
rameters will not improve efficiency of the serrated section. 
As far as the type of a grate and the gaps between them are 
concerned, then there is a possibility to improve the ginning 
efficiency by examining the trihedral grates, applied in the 
textile industry, with a cross section of 25 × 19 × 12 mm.

The basic process in the ginning technology of raw cotton 
from large weedy impurities and from small waste is the im-
pact interaction between cotton flying detachments and the 
grates. This very process requires additional detailed analysis. 
The main task in this case is a theoretical consideration of the 
dynamics of impact interaction between raw cotton and the 
grates, described by a system of linear and non-linear models. 

An analysis of the process is based on the model of a raw 
cotton flying detachment, a transition to which is imple-
mented under the following assumptions:

– all the forces acting on a flying detachment are in the 
same plane; 

– actual properties of the flying detachment and fiber 
locks that connecting the gear and the flying detachment are 
modeled with elastic elements – linear or nonlinear; 

– we assume the deformation of elastic elements to be 
small; 

– we consider mass of the flying detachment to be con-
centrated in the center of gravity.

Then at impact moment (t > 0), the process schematic 
can be represented in the form shown in Fig. 3, where m and 
mc denote masses of the flying detachment and the weed,  
l1  is the length of elastic elements that connect the seed 
with a point of contact between the grate and the weed,  
l2  is the length of connection between the tooth and the  
flying detachment center. Angles α, ψ, γ and ψ1 coordinate 
elastic elements and velocities ϑ w1 1= R  and ϑ w0 = R. Elastic 
elements possess rigidity characteristics С1, С2, С3 and С4  
at linear ( )n Ii ≠  dependence P(y). We shall denote the length 
of elastic element C4 as e4.
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Fig. 3. Schematic of the impact moment in the ginning process

At the first stage, we shall explore behavior of the model 
without a mass of the weed, assuming it has little effect on the 
dynamics of the system. 

Consider the motion of a closed linear-elastic system that 
executes an oscillatory process without breaking a contact 
between the flying detachment and the grate. We shall de-
note reactions of elastic elements as e1 and e2, functions of 
displacement as x and y, masses m, respectively, as

S c x y

S c y
1 1

2 2

= − − +( )
=





cos sin ;

,

α α
	 (9)
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and obtain dirrerential equations of motion

mx c x c y

my c x c c y





+ − =

− + +( )
1

2
1

1 1
2

2

0cos sin cos ;

sin cos sin

α α α

α α α ==





 0.
	 (10)

By introducing, as accepted:

a
c
m

a a
c
m

a
m

c c

11
1 2

12 21
1

22 1
2

2

1

= = = −

= +( )








cos ; sin cos ,

sin ,

α α α

α


	 (11)

we shall obtain a canonical system of free oscillations in 
direct form:





x

y

a x a y

a x a y

+ + =
+ + =





11 21

12 22

0

0

,

,
	 (12)

whose particular solution takes the form

x Axk P t

y Ayk P t
k k

k k

= +( )
= +( )







sin ,

sin .

ϕ
ϕ

	 (13)

Here Ak and Pk are, respectively, amplitude and frequency 
of the k-th form of natural oscillations of the system (k = 1,2 –  
with two degrees of freedom). By substituting (13) in (12) 
and reducing by sine, we shall have a system of equations 
relative to unknown amplitudes, Ахk and Аyk

A a P A a

A a A a P

xk k yk

xk yk k

11
2

21

12 22
2

0

0

−( ) + =

+ −( ) =







,

.
	 (14)

System (14) is a homogeneous joint because the rank of 
its matrix is equal to the number of unknowns (r = n = 2). Its 
solution Axk = Ayk = 0 corresponds to the rest of the system and 
is trivial. For it to have a non-zero solution, it is necessary 
that the determinant of the system is equal to zero

det
;

;
.A

a P a

a a P
k

k

=
−

−
=11

2
21

12 22
2

0 	 (15)

Hence we have the condition imposed on frequency Pk so 
that Аxk ≠ 0, Ауk ≠ 0:

a P a P ak k11
2

22
2

12
2 0−( ) −( ) − = . 	 (16)

This yields two solutions (the first with a minus sign, the 
second with a plus sign). As we accepted P1 ≤ P2, the given 
solutions considering (14) take the form

At a change in α
π π[ ] = −



2 2

; ,  always P1 ≥ 0; P2 > 0 (at 

α
π

=
2

 and α
π

= −
2

, that is, on the boundaries of the interval, 

P1 = 0, P2 > 0 and the system has a single degree of freedom).
There is an interesting case when the elastic elements 

are mutually perpendicular (α = 0). Then a12 = 0; a
c
m12

1= ; 

a
c
m22

2=  and in systems (10) and (12) the equations are in-

dependent from each other (orthogonal) and their separate 
solution is possible:

P
c
m1

1= ;  P
c
m2

2= 	 (18)

and mass m executes small oscillations, independent of each 
other, along the Ox and Oy axes.

For each frequency (P1 and P2), there is a certain correla-
tion between Axk  and Ауk, called a form of oscillations for  
a system with 2 degrees of freedom. There are two such forms:
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c mP
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α
α α

α α
α 22

2 . 	 (20)

It is easy to show that P a1
2

11
2 0− < , and P a2

2
11 0− >  and 

λ1 0> ; λ2 0<  at a12 0< . This means that in the first case mass 
m moves along the Ox and Oy axes «synchronously» (in 
quadrants 1 and 111), and the accepted direction of axes 
allows us to conclude that elastic elements c1 and c2 are 
stretched and compressed at the same time; in this case, the 
oscillation frequency is equal to Р1 (Р1<P2) and matches 
the most stable form of the motion of masses in one phase. 
It should be noted at once that this is exactly why the 
lowest frequency P1 is the magnitude that defines the time 
of impact interaction between the flying detachment and  
the grate.

In the second case, elastic elements execute antiphase 
oscillations – stretching of spring C1 is matched with 
compression C2; in this case, oscillation frequency is higher 
P2>P1 and such a motion is less stable and more difficult  
to excite. 

The total solution of system (10) is composed of a li
near combination of particular solutions to (13) with four 
unknown parameters A Ax x1 2 1 2, , ,ϕ ϕ  determined from the 
initial conditions of values of displacements and velocities m 
at moment t = 0.

Hence, it follows that for a full analysis of the process 
it would suffice if the grate and a tooth of the saw did not 
change mutual position, or such change were insignificant 
during the impact. Therefore, for the further study we shall 
apply a method of the reverse motion. A full analysis of the 
process of impact interaction between the flying detachment 
and the grate of cleaner of large waste can be given either by 
the method of reverse motion, or by applying, in the point 
of contact between the flying detachment and the grate, 
a forcing effort in the form of a kinetic momentum. Both 
methods are equally valid and produce one result. We shall 

confine ourselves to the forst one, where it is more 
convenient to take into account initial conditions of 
the process.

We shall use a schematic in Fig. 3 and, in addi-
tion to the accepted designations, denote a displace-

ment of the contact point between the flying detachment and 
the grate as magnitudes x, y1, grate mass as μ, with μ >> m, 
and hereafter we shall consider it to be infinitely large. Sys-
tem (9) in this case will be rewritten in the form:

S c x x y y

S c y

1 1 1 1

2 2

= − −( ) − −( ) 
=







cos sin ,

,

α α
	 (21)

while the motion will be described by four differential equa-
tions (22):

P
c c c c c

m1 2
2 1 2 2 1

2 2
1
2 2 24

2,

sin cos sin cos
.=

+( ) ± + −( )  + −α α α α
	 (17)
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M C x x c y y

m c x x

x

x





+ −( ) − −( ) − =

− −( )
1 1

2
1 1

1 1
2

0cos sin cos ,

cos

α α α

α ++ −( ) − =

− −( ) + −( )
c y y

My c x x c y y

1 1

1 1 1 1 1
2

0sin cos ,

sin cos sin

α α

α α α ==

+ −( ) − −( ) + =













0

01 1 1 1
2

2

,

sin cos sin .my c x x c y y c y α α α

	(22)

A system of four equations can be simplified by intro-
ducing new variables and establishing a link between the 
derivatives:

ξ ξ ξ= − = − = −
= − = − = −

x x x x

z y y z y y z y

x x1 1

1 1 1

1; ;

; ;

,

  

 





   yy.






	 (23)

It is obvious that the new variables have the following 
meaning – ξ  and z are, respectively, the deformations of ele-
ment e1  along the Ox, Oy axes; the first is negative because 
an increase in x1 shortens the elastic element, while x – ex-
tends; the second is positive. 

In the new coordinates, we shall have three equations. 

m c c z

mz c c z c y





ξ ξ α α α
ξ α α α

+ − =
− + − =

1
2

1

1 1
2

2

0cos sin cos ,

sin cos sin 00

01 1
2

2

,

sin cos sin ,my c c z c y+ − + =







 ξ α α α

	 (24)

that make it possible to fully describe the examined process, 
taking into account relative motion of the grate and the ser-
rated surface. 

It is obvious that if the grate is motionless relative to the 
saw x y1 10 0= =( ), ,  the two last equations of systes (24) are 
identical, and it transforms to the form (10). 

We shall obtain from the first and third equations (22) 
at μ→∞









x

y

x c x c t c

y c y c t c
x x x

y y y

1

1

1 1 1

1 1 1

0

0

= = = +
= = = +







; ;

; ;

,

,
	 (25)

where constants Сх‚ Сх1‚ Су‚ Cy1 are determined from the 
initial conditions of the process (in reversed motion) – at 
t = 0

c y C c c

x t y t
x y x y= = = = =

= =

ϑ ψ ϑ ψ

ϑ ψ ϑ ψ
1 1 1 1 1

1 1 1 1

0cos , sin , ,

cos , sin . 	 (26)

That is, motion of the grate is executed in accordance 
with the law of the portable motion. Having x1 and y1, and 
having received a solution to the system relative to ξ,  z,  
it is easy to find from (23) a natural motion (displacement) 
of mass m.

Denote, as previously,

c
m

a
c

m
a a

c
m

a
c
m

a

1
2

11
1

21 12

1
2

22
2

33

cos
;

sin cos

sin
;

,

,

α α α

α

= − = =

= =










	 (27)

and reduce system (24) to the canonical form.







ξ ξ
ξ
ξ

+ + =
+ + − =
− − + =

a a z

a a z a y

a a z a y

z

y

11 21

12 22 33

12 22 33

0

0

0

,

,

,









	 (28)

We shall search for a solution to system (28) in the form

ξ ϕ

ϕ
ϕ

ξ= +( )
= +( )
= +( )









A P t

z A P t

y A P t

k k k

zk k k

yk k k

sin ,

sin ,

sin .

	 (29)

Here k = 1‚ 2‚ 3, but, as will be shown below, there are 
two such frequencies. Substituting (29) in (28) and reducing 
by the trigonometric function, we shall have the matrix of 
equation coefficients.

A

a P a

a a P a

a a a P

=

−( )
−( ) −

− −( )














12
2

21

12 22
2

33

12 22 33
2

0; ;

; ;

; ;






. 	 (30)

whose rank is r = 3, since det .A ≠ 0
Simplify (30) by adding elements of line 2 to line 3, then 

we subtract from the elements of column 2 the elements of 
the third, which, in line with a rule of matrix transform, does 
not change their magnitude. Then we have

A

a P a

a a P a

P

a=

−( )
−( ) −



















+

12
2

21

12 22
2

33

2

33

0

0 0

; ;

; ;

; ;

; 	 (31)

det .A P a P a a P a= − −( ) + −( ) −  =2
11

2
22 33

2
12
2 0 	 (32)

Because the analyzed system of equations relative to the 
unknown amplitudes is homogeneous, (32) is a condition for 
the existence of a nontrivial solution. Here we immediately 
have to consider (27)

that for Р1 and Р2 coincides with (17). Root P0 = 0 means  
a non-periodic motion M and motion m that corresponds to it. 

The total solution to the system will be written in the form:

ξ ϕ ϕ

ϕ
ξ ξ= + + +

= + +

A P t A P t

z A P t A Pz z

1 1 1 2 2 2

1 1 1 2 2

sin( ) sin( ),

sin( ) sin( tt

y A P t A P ty y

+
= + + +









ϕ
ϕ ϕ

2

1 1 1 2 2 2

),

sin( ) sin( ).

	 (34)

Two of the three solutions in (34) are identical. Sub-
stitute their particular values in (28) and find the ratio of 
amplitudes:

A
A
A

a
p a a

A

A
a

p a ak
zk

k

yk

k

= =
− −

= −
− −ξ ξ

12
2

33 22

12
2

33 22

; . 	 (35)

Given the multidirectionality of coordinates z and y, di-
viding the first equation (35) by the second, we obtain

A
A

zk

yk

= 1. 	 (36)

Analysis of the form of oscillations, considered above, 
holds here for the periodic component of the overall motion  

P

P
c c c c c

m

0

1 2
2 1 2 2 1

2 2
1
2 2 2

0

4

2

=

=
+( ) ± + −( )  +

;

sin cos sin cos
,

α α α α
,,









	 (33)
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of the system. Initial parameters of variables z and ξ are easily 
found from (23) and (26):

z z v

v
0 0 1 1

0 0 1 1

0

0

= =
= =





; cos

; sin

,

.

ψ
ξ ξ ξ

	 (37)

It is possible to obtain equivalent to it from system (34) 
by replacing the arbitrary constants with the new ones.

A Bi j ci jij = +2 2 , 	 (38)

ϕij
ij

ij

c

B
= arctg . 	 (39)

Here i VZ j IV= =ξ ; 2  and consider in this case (39). 
Constants are to be found from initial conditions (37):

C C P Pξ ξ1 2 1 20= = ≠( ),at 	 (40)

in this case, x and y can be found from (23), (26), (35),  
(39), (40). 

Add to this that

It is obvious that if a change in ξ  and z is of a periodic 
character, then displacements x and y contain both harmonic 
motion and aperiodic, proportional to time.

x v t y v t z= − = −1 1 1 1cos , sin .ψ ξ ψ 	 (42)

If ψ1 0= , then only a periodic motion occurs along the  
direction of axis. At ψ1 0>  tension of element C2 subsides, 
and, because it represents a flexible connection, with a de-
crease in tension to zero, it is possible that the flying detach-
ment falls off the gear of the serrated drum. Total displace-

ments along Ox might be missing at ψ
π

=
2

 and ψ
π

1 2
= −  in 

boundary variants that are not applicable in the process of 
removing large waste. 

At α = 0 from (39), we have considering (40) and (41):

ξ
ϑ

ψ

ϑ
ψ

=

= − =










1

1
1 1

1

2
1 2

P
P t

z y
P

P t

cos sin ,

sin sin .
	 (43)

In addition, at ψ1 1 2= arctg ,A  only one form of natural 
oscillations of the system is possible. At α = 0 and ψ1 0=  os-
cillations of the system are possible only along the Ox axis (at 
α = 0). At ψ π1 2=  oscillations occur along the Oy axis.

5. Discussion of results of studying the process of 
formation of the upper part of a bundle and the influence 
of density on the adhesion between waste and raw cotton

We studied theoretically and experimentally the process 
of throwing and fixing the particles of cotton on the serrated 
gear. Based on the elastic multi-link model, we analyzed energy 
of the process and investigated transformation of the potential 
energy of flying detachment deformation into kinetic energy.

A comprehensive theoretical and experimental study was 
conducted of the impact interaction between the flying detach-
ments of raw cotton and the ginning grate. We examined an 
elastic model of the flying detachment that interacts with the 
grate, and performed an analysis of natural frequencies and the 
form of the system’s oscillations. It was demonstrated that it is 
possible, based on this, to define the laws of motion of the flying 
detachment, to calculate the time, maximal deformation and 
the impact force between the flying detachment and the grate.

A complex experimental study into an impact interaction 
between the flying detachment and the grate was carried out. 
It was established that at an increase in the velocity speed of 
the shell of serrated drum from 5 to 9 m/s, the impact force 

changes from 0.39 to 0.72 n. Results of 
experimental research into the impact 
process were approximated by linear 
and non-linear models of elastic proper-
ties of fibrous particles. It is shown that 
the impact force depends on the defor-
mation magnitude in a degree of 1.39. 

Research results make it possible to mechanize the pro-
cess of formation of bundles of raw cotton. An application 
of mechanical bundling press in the cotton ginning industry 
eliminates manual labor. Present work is a continuation of 
scientific studies [15–17].

6. Conclusions

1. The proposed method of kinematic analysis of the 
cam-lever mechanisms makes it possible to automate the 
process of obtaining and solving an equation to determine 
kinematic parameters of all elements of the mechanism at the 
assigned law of motion of the drive link, which is the cam.

2. The proposed calculation algorithm allows performing 
an analysis of a sloped shield, forming the upper layer of  
a cotton bundle. A special feature is that changing kinematic 
parameters of the shield can alter the shape of the upper part 
of the bundle depending on the humidity and density of raw 
cotton that is packed.

3. We studied theoretically and experimentally the pro-
cess of cotton ginning, taking into account the impact inter-
action between the flying detachments and the grate of the 
cleaner. It is shown that the higher the density of raw cotton 
in a bundle, the lower the ginning effect. It was established 
that at ginning the impact force depends on the deformation 
magnitude in a degree of 1.39.

B A
c v mp c a c a a a a
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ψ ψ ψ

1 1
1 1 2

2
1 1

2
1 1 1=

− +( cos cos cos sin cos sin )sin cos
mmp p p c a c mP

B A
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1
2

1
2

2 1
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2 2
1 1 1

2
1 1

2
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ψ ψ1 1 1

1 2
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